Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 9, pp 1282–1290 | Cite as

Space Experiment to Measure Ionospheric Radio Signal Delays

  • A. S. Kosov
  • A. A. ChernyshovEmail author
  • M. M. Mogilevsky
  • D. V. Chugunin
  • V. V. Korogod
  • V. A. Munitsyn
  • M. S. Dolgonosov
  • D. P. Skulachev


This paper describes a space experiment that is planned to be performed within the framework of the Russian project of the microsatellite CHIBIS AI to meaure ionospheric signal delays to determine the electron density and spatial fluctuations of the ionospheric and magnetospheric plasma. The measurements will be conducted by the phase interferometer method at two levels using signals from the onboard in-phase transmitters and GPS/GLONASS signals. The location of the radiation sources at two levels will make it possible to separate plasma variations in the ionosphere and inner magnetosphere–plasmasphere. The experimental results are of interest both for solving fundamental problems of near-Earth plasma physics and applied problems to improve positioning accuracy using global navigation systems.


ionosphere total electron content magnetosphere three-frequency radio transmitter 



  1. 1.
    Balan, N., Otsuka, Y., Tsugawa, T., Miyazak, S., Ogawa, T., and Shiokawa, K., Plasmaspheric electron content in the GPS ray paths over Japan under magnetically quiet conditions at high solar activity, Earth Planets Space, 2002, vol. 54, pp. 71–79. doi 10.1186/BF03352423CrossRefGoogle Scholar
  2. 2.
    Beidou navigation satellite system signal in space. Interface control document. Open service signal (version 2.0). China satellite navigation office. December 2013. 6b8a6182fa73a4ab3a5f107f762283712.pdf.Google Scholar
  3. 3.
    Belehaki, A., Jakowski, N., and Reinisch, B.W., Plasmaspheric electron content derived from GPS TEC and digisonde ionograms, Adv. Space Res., 2004, vol. 33, no. 6, pp. 833–837. doi 10.1016/j.asr.2003.07.008CrossRefGoogle Scholar
  4. 4.
    Bondur, V.G. and Smirnov, V.M., Method for monitoring seismically hazardous territories by ionospheric variations recorded by satellite navigation systems, Dokl. Earth Sci., 2005a, vol. 403, no. 5, pp. 736–740.Google Scholar
  5. 5.
    Bondur, V.G. and Smirnov, V.M., Monitoring of ionosphere variations during the preparation and realization of earthquakes using satellite navigation system data, in Proceedings of the 31st International Symposium on Remote Sensing of Environment (ISRSE), 2005b, pp. 372–375.Google Scholar
  6. 6.
    Bryunelli, B.E. and Namgaladze, A.A., Fizika ionosfery (Ionospheric Physics), Moscow: Nauka, 1988.Google Scholar
  7. 7.
    Cherniak, Iu.V., Zakharenkova, I.E., Krankowski, A., and Shagimuratov, I.I., Plasmaspheric electron content derived from GPS TEC and FORMOSAT-3/COSMIC measurements: Solar minimum condition, Adv. Space Res., 2012, vol. 50, pp. 427–440.CrossRefGoogle Scholar
  8. 8.
    Chernyshov, A.A., Chugunin, D.V., Mogilevsky, M.M., Moiseenko, I. L., Ilyasov, A.A., Vovchenko, V.V., Pulinets, S.A., Klimenko, M.V., Zakharenkova, I.E., Kostrov, A.V., Gushchin, M.E., and Korobkov, S.V., Approaches to studying the multiscale ionospheric structure using nanosatellites, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 1, pp. 72–79. doi 10.7868/ S0016794016010041Google Scholar
  9. 9.
    Chernyshov, A.A., Ilyasov, A.A., Mogilevsky, M.M., Golovchanskaya, I.V., and Kozelov, B.V., Influence of inhomogeneities of the plasma density and electric field on the generation of electrostatic noise in the auroral zone, Plasma Phys. Rep., 2015, vol. 41, no. 3, pp. 254–261. doi 10.7868/S0367292115030014CrossRefGoogle Scholar
  10. 10.
    European GNSS (Galileo) open service Signal–in–space interface control document. European Union 2016, Document subject to terms of use and disclaimers p. i–ii, OS SIS ICD, Issue 1.3, December 2016. https:// Galileo-OS-SIS-ICD.pdf.Google Scholar
  11. 11.
    Gershman, B.N., Erukhimov, A.M., and Yashin, Yu.Ya., Volnovye yavleniya v ionosfere i kosmicheskoi plazme (Wave Phenomena in the Ionosphere and Space Plasma), Moscow: Nauka, 1984.Google Scholar
  12. 12.
    Global positioning systems directorate. Systems engineering and integration. Interface specification. IS–GPS–200. 5th September 2012. Scholar
  13. 13.
    Global’naya navigatsionnaya sputnikovaya sistema GLONASS. Interfeisnyi kontrol’nyi dokument. Navigatsionnyi radiosignal v diapazonakh L1, L2 (redaktsiya 5.1) (Global Navigation Satellite System GLONASS. Interface Control Document. Navigation Radio Signal in L1 and L2 Ranges (Edition 5.1)), Moscow, 2008. http://www.aggf. ru/gnss/glon/ikd51ru.pdf.Google Scholar
  14. 14.
    Khabituev, D.S. and Shpynev, B.G., Variations in O+/N+ transition height over East Siberia from Irkutsk incoherent scatter data and GPS total electron content, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2014, vol. 11, no. 1, pp. 107–117.Google Scholar
  15. 15.
    Klimenko, M.V., Klimenko, V.V., Bessarab, F.S., Ratovsky, K.G., Zakharenkova, I.E., Nosikov, I. A., Stepanov, A.E., Kotova, D.S., Vorobjev, V.G., and Yagodkina, O.I., Influence of geomagnetic storms of September 26–30, 2011, on the ionosphere and HF radiowave propagation. I. Ionospheric effects, Geomagn. Aeron. (Engl. Transl.), 2015a, vol. 55, no. 6, pp. 744–762.Google Scholar
  16. 16.
    Klimenko, M.V., Klimenko, V.V., Zakharenkova, I.E., and Cherniak, Iu.V., The global morphology of the plasmaspheric electron content during Northern winter 2009 based on GPS/COSMIC observation and GSM TIP model results, Adv. Space Res., 2015b, vol. 55, no. 8, pp. 2077–2085. doi 10.1016/j.asr.2014.06.027CrossRefGoogle Scholar
  17. 17.
    Krinberg, I.A. and Tashchilin, A.V., Ionosfera i plazmosfera (The Ionosphere and Plasmosphere), Moscow: Nauka, 1984.Google Scholar
  18. 18.
    Lee, H.B., Jee, G., Kim, Y.H., and Shim, J.S., Characteristics of global plasmaspheric TEC in comparison with the ionosphere simultaneously observed by Jason-1 satellite, J. Geophys. Res., 2013, vol. 118, pp. 935–946. doi 10.1002/jgra.50130CrossRefGoogle Scholar
  19. 19.
    Lemaire, J.F. and Gringauz, K.I., The Earth’s Plasmasphere, Cambridge: Cambridge Univ. Press, 1998.CrossRefGoogle Scholar
  20. 20.
    Lunt, N., Kersley, L., and Bailey, G.J., The influence of the protonosphere on GPS observations: Model simulation, Radio. Sci., 1999, vol. 34, no. 3, pp. 725–732. doi 10.1029/1999RS900002CrossRefGoogle Scholar
  21. 21.
    Manju, G., Ravindran, S., Devasia, C.V., Thampi, S.V., and Sridharan, R., Plasmaspheric electron content (PEC) over low latitude regions around the magnetic equator in the Indian sector during different geophysical conditions, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, pp. 1066–1073.CrossRefGoogle Scholar
  22. 22.
    Mosert, M., Gende, M., Brunini, C., and Altadill, D., Comparisons of IRI TEC predictions with GPS and digisonde measurements at Ebro, Adv. Space Res., 2007, vol. 39, pp. 841–847.CrossRefGoogle Scholar
  23. 23.
    Noveishie issledovaniya rasprostraneniya radiovoln vdol' zemnoi poverkhnosti (Recent Studies of Radiowave Propagation Along the Earth’s Surface), Mandel’shtam, L.I. and Papaleksi, N.D., Eds., Moscow–Leningrad, 1945.Google Scholar
  24. 24.
    Novikov, L.S., Osnovy ekologii okolozemnogo kosmicheskogo prostranstva (Fundamentals of Ecology of the Near-Earth Space), Moscow: Universitetskaya Kniga, 2006.Google Scholar
  25. 25.
    Petrukovich, A.A., Mogilevsky, M.M., Chernyshov, A.A., and Shklyar, D.R., Some aspects of magnetosphere–ionosphere relations, Phys.-Usp., 2015, vol. 58, no. 6, pp. 606–611. doi 10.3367/UFNe.0185.201506i.0649CrossRefGoogle Scholar
  26. 26.
    Quasi-zenith satellite system navigation service interface specification for QZSS (IS-QZSS). V1.5, Japan Aerospace Exploration Agency. March 27, 2013. http://qz-vision. Scholar
  27. 27.
    Singh, A.K., Singh, R.P., and Siingh, D., State studies of Earth’s plasmasphere: A review, Planet. Space Sci., 2011, vol. 59, no. 9, pp. 810–834.CrossRefGoogle Scholar
  28. 28.
    Yeh, K.C. and Liu, C.H., Radio wave scintillations in the ionosphere, Proc. IEEE, 1982, vol. 70, no. 4, pp. 24–64.Google Scholar
  29. 29.
    Yizengaw, E., Moldwin, M.B., Galvan, D., Iijima, B.A., Komjathy, A., and Mannucci, A.J., Global plasmaspheric TEC and its relative contribution to GPS TEC, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, pp. 1541–1548. doi 10.1016/j.jastp.2008.04.022CrossRefGoogle Scholar
  30. 30.
    Zolotov, O.V., Earthquake effects in ionospheric TEC variations, Cand. Sci. (Phys.–Math.) Dissertation, St. Petersburg: St. Petersburg State University, 2015.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. S. Kosov
    • 1
  • A. A. Chernyshov
    • 1
    Email author
  • M. M. Mogilevsky
    • 1
  • D. V. Chugunin
    • 1
  • V. V. Korogod
    • 1
  • V. A. Munitsyn
    • 1
  • M. S. Dolgonosov
    • 1
  • D. P. Skulachev
    • 1
  1. 1.Space Research Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations