Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 9, pp 1374–1380 | Cite as

Evaluation of the Species Composition and the Biological Productivity of Forests Based on Remote Sensing Data with High Spatial and Spectral Resolution

  • V. V. KozoderovEmail author
  • E. V. Dmitriev
  • P. G. Melnik
  • S. A. Donskoi


The application of hyperspectral remote sensing of high spatial resolution is compared to conventional ground-based forest surveys on sample plots and is considered as a possible alternative to these labor-intensive works. Pattern recognition methods have become the principal approach used to solve this type of applied problems. Pattern recognition processing of hyperspectral images serves to identify different classes of objects as well as to determine their parameters, such as the net primary productivity of forests with different ages and species composition. The employed classifiers use the latest advances in forest pattern recognition based on hyperspectral images. The classification accuracy is compared to the accuracy of ground-based observations. The results indicate the promise of the proposed novel approach.


remote sensing hyperspectral images pattern recognition of forest canopy objects evaluation of biological productivity of forests 



This work was supported by the Russian Science Foundation (project no. 16-11-00007) and the Russian Foundation for Basic Research (project no. 16-01-00107).


  1. 1.
    Bondur, V.G., Modern approaches to processing large hyperspectral and multispectral aerospace data flows, Izv., Atmos. Ocean. Phys., 2014, vol. 50, no. 9, 840–852.CrossRefGoogle Scholar
  2. 2.
    Dietterich, T.G. and Bakiri, G., Solving multiclass learning problems via error-correcting output codes, J. Artif. Intell. Res., 1995, vol. 2, pp. 263–286.CrossRefGoogle Scholar
  3. 3.
    Dmitriev, E.V., Kozoderov, V.V., Dement’ev, A.O., and Safonova, A.N., Classifier complexing in problem of thematic processing of hyperspectral aerospace images, Optoelectron., Instrum. Data Process., 2018, vol. 54, no. 3, pp. 213–221.CrossRefGoogle Scholar
  4. 4.
    Gobakken, T. and Næsset, E., Estimation of diameter and basal area distributions in coniferous forest by means of airborne laser scanner data, Scand. J. For. Res., 2004, vol. 19, pp. 529–542.CrossRefGoogle Scholar
  5. 5.
    Gower, S.T., Krankina, O., Olson, M., Apps, M., Linder, S., and Wang, C., Net primary production and carbon allocation patterns of boreal forest ecosystems, Ecol. Appl., 2001, vol. 11, pp. 1395–1411.CrossRefGoogle Scholar
  6. 6.
    Keenan, R.J., Climate change impacts and adaptation in forest management: A review, Ann. For. Sci., 2015, vol. 72, pp. 145–167.CrossRefGoogle Scholar
  7. 7.
    Kozoderov, V.V. and Dmitriev, E.V., Testing different classification methods in airborne hyperspectral imagery processing, Opt. Express, 2016, vol. 24, no. 10, pp. A956–A965.CrossRefGoogle Scholar
  8. 8.
    Kozoderov, V.V. and Dmitriev, E.V., Remote sensing of soils and vegetation: Quantitative parameters retrieval using pattern-recognition techniques and forest stand structure assessment, Int. J. Remote Sens., 2011, vol. 32, pp. 5699–5717.CrossRefGoogle Scholar
  9. 9.
    Kozoderov, V.V. and Dmitriev, E.V., Models of recognition and assessment of the state of forest vegetation using hyperspectral remote sensing data, Issled. Zemli Kosmosa, 2017, no. 6, pp. 75–88.Google Scholar
  10. 10.
    Kozoderov, V.V., Kondranin, T.V., Dmitriev, E.V., and Sokolov, A.A., Retrieval of forest attributes using optical airborne remote sensing data, Opt. Express, 2014a, vol. 22, no. 13, pp. 15410–15423.CrossRefGoogle Scholar
  11. 11.
    Kozoderov, V.V., Kondranin, T.V., Dmitriev, E.V., and Kamentsev, V.P., A system for processing hyperspectral imagery: Application to detecting forest species, Int. J. Remote Sens., 2014b, vol. 35, no. 15, pp. 5926–5945.Google Scholar
  12. 12.
    Kozoderov, V.V., Dmitriev, E.V., and Sokolov, A.A., Improved technique for retrieval of forest parameters from hyperspectral remote sensing data, Opt. Express, 2015a, vol. 23, no. 24, pp. A1342–A1353.CrossRefGoogle Scholar
  13. 13.
    Kozoderov, V.V., Kondranin, T.V., Dmitriev, E.V., and Kamentsev, V.P., Bayesian classifier applications of airborne hyperspectral imagery processing for forested areas, Adv. Space Res., 2015b, vol. 55, no. 11, pp. 2657–2667.CrossRefGoogle Scholar
  14. 14.
    Kozoderov, V.V., Kondranin, T.V., and Dmitriev, E.V., Hyperspectral remote sensing imagery processing focused on forest applications, Int. Rev. Aerosp. Eng., 2017, vol. 10, no. 5, pp. 267–276.Google Scholar
  15. 15.
    Matikainen, L., Karila, K., Hyyppä, J., Litkey, P., Puttonen, E., and Ahokas, E., Object-based analysis of multispectral airborne laser scanner data for land cover classification and map updating, ISPRS J. Photogramm. Remote Sens., 2017, vol. 128, pp. 298–313.CrossRefGoogle Scholar
  16. 16.
    Nevalainen, O., Honkavaara, E., Tuominen, S., Viljanen, N., Hakala, T., Yu, X., and Tommaselli, A.M., Individual tree detection and classification with UAV-based photogrammetric point clouds and hyperspectral imaging, Remote Sens., 2017, vol. 9, pp. 185–195.CrossRefGoogle Scholar
  17. 17.
    Rowell, E., Seielstad, C., Vierling, L., Queen, L., and Queen, W., Using laser altimetry-based segmentation to refine automated tree identification in managed forests of the Black Hills, South Dakota, Photogramm. Eng. Remote Sens., 2006, vol. 72, pp. 1379–1388.CrossRefGoogle Scholar
  18. 18.
    Schepaschenko, D., Moltchanova, E., Shvidenko, A., Blyshchyk, V., Dmitriev, E., Martynenko, O., See, L., and Kraxner, F., Improved estimates of biomass expansion factors for Russian forests, Forests, 2018, vol. 9, no. 312, pp. 1–23.CrossRefGoogle Scholar
  19. 19.
    Shvidenko, A.Z., Nilsson, S., Stolbovoi, V.S., et al., Aggregated assessment of main indicators of the bioproduction and carbon budget of terrestrial ecosystems of Russia. 2. Net-primary production of ecosystems, Ekologiya, 2001, no. 2, pp. 83–90.Google Scholar
  20. 20.
    Shvidenko, A.Z., Schepaschenko, D.G., Nilsson, S., Bului, Yu.I., Tablitsy i modeli khoda rosta i produktivnosti nasazhdenii osnovnykh lesoobrazuyushchikh porod Severnoi Evrazii (normativno–spravochnye materialy) (Tables and Models of the Growth and Productivity of Stands of Main Forest-Forming Species in North Eurasia (Regulatory Reference Data)), Moscow: Federal’noe agentstvo lesnogo khozyaistva, 2008.Google Scholar
  21. 21.
    Zamolodchikov, D.G. and Utkin, A.I., System of conversion relations for calculating the net primary production of forest ecosystems from tree stocks, Lesovedeniye, 2000, no. 6, pp. 54–63.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Kozoderov
    • 1
    Email author
  • E. V. Dmitriev
    • 2
  • P. G. Melnik
    • 3
  • S. A. Donskoi
    • 4
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Institute of Numerical Mathematics, Russian Academy of SciencesMoscowRussia
  3. 3.Mytishchi Branch of the Bauman Moscow State Technical UniversityMytishchiRussia
  4. 4.RoslesinforgMoscowRussia

Personalised recommendations