Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 9, pp 1391–1398 | Cite as

The Satellite Atmospheric Sounder IKFS-2: 2. Validation of the Temperature Sounding of the Atmosphere

  • A. V. PolyakovEmail author
  • Yu. M. Timofeyev
  • A. B. Uspensky
  • A. V. Kukharsky


The validation of measurements of vertical temperature profiles by the IKFS-2 instrument (the Meteor-M no. 2 satellite) in cloudless conditions was based on the comparison with radiosonde measurements and data from NCEP GFS analysis. Vertical resolution matching is shown to decrease the root-mean-square (RMS) difference between the results provided by the two measurement methods by 0.2–1 K depending on the altitude in the atmosphere. When the vertical resolution is matched the absolute values of the mean differences between the satellite and the radiosonde measurements do not exceed 1 K and the mean square differences vary from 1.2 to 1.8 K, except for the surface layer, where they reach 2 K and 4 K, respectively. The RMS differences between the satellite temperature measurements and NCEP GFS data show worse agreement over the ground (up to 2 K against 1.2–1.5 K for sounders). In the 300–600 hPa pressure interval, the RMS difference between satellite and NCEP GFS data is less than 1 K over water surface but increases to 1.5–2 K over land. In the cloudless cases, the accuracy of sounding over water surface by IKFS-2 (when compared with the analysis results) approaches the accuracy displayed by IASI, which is functionally similar to IKFS-2.


temperature sounding of the atmosphere satellite data validation 



The interpretation of satellite measurements was supported by the Russian Science Foundation, project no. 14-17-00096.


  1. 1.
    Asmus, V.V., Timofeyev, Yu.M., Polyakov, A.V., Uspensky, A.B., Golovin, Yu.M., Zavelevich, F.S., Kozlov, D.A., Rublev, A.N., Kukharsky, A.V., Pyatkin, V.P., and Rusin, E.V., Atmospheric temperature sounding with the Fourier spectrometer, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 4, pp. 428–432.CrossRefGoogle Scholar
  2. 2.
    Golovin, Yu.M., Zavelevich, F.S., Nikulin, A.G., Kozlov, D.A., Monakhov, D.O., Kozlov, I.A., Arkhipov, S.A., Tselikov, V.A., and Romanovsky, A.S., Spaceborne infrared Fourier-transform spectrometers for temperature and humidity sounding of the Earth’s atmosphere, Izv., Atmos. Ocean. Phys., 2014, vol. 50, no. 9, pp. 1004–1015.CrossRefGoogle Scholar
  3. 3.
    Golovin, Yu.M., Zavelevich, F.S., Kozlov, D.A., Kozlov, I.A., Monakhov, D.O., Nikulin, A.G., Uspensky, A.B., Rublev, A.N., and Kukharsky, A.V., Infrared Fourier spectrometer IKFS-2: Results of its operation onboard the Meteor-M no. 2 meteorological satellite, Issled. Zemli Kosmosa, 2017, no. 4, pp. 88–100.Google Scholar
  4. 4.
    IASI L2 PPF v. 6.2, Validation Report, EUM/RSP/ REP/16/857500, v1Ce-signed, 30 May 2016. http:// Scholar
  5. 5.
    Kondrat’ev, K.Ya. and Timofeyev, Yu.M., Meteorologicheskoe zondirovanie atmosfery iz kosmosa (Meteorological Sounding of the Atmosphere from Space), Leningrad: Gidrometeoizdat, 1978. NCEP GFS, NOAA National Center for Environmental Prediction. http:// Scholar
  6. 6.
    Polyakov, A.V., The method of artificial neural networks in retrieving vertical profiles of atmospheric parameters, Atmos. Oceanic Opt., 2014, vol. 27, no. 3, pp. 247–252.CrossRefGoogle Scholar
  7. 7.
    Polyakov, A.V. and Rozanov, V.V., Iterative method for solving nonlinear inverse problems using a priori data, Tr. GosNITsIPR, 1989, vol. 33, pp. 99–103.Google Scholar
  8. 8.
    Polyakov, A.V., Timofeyev, Yu.M., and Uspensky, A.B., Temperature–moisture sounding of the atmosphere by data of IKFS-2, a satellite IR sensing instrument with high spectral resolution, Issled. Zemli Kosmosa, 2009, no. 5, pp. 3–10.Google Scholar
  9. 9.
    Polyakov, A.V., Timofeyev, Yu.M., and Virolainen, Ya.A., Using artificial neural networks in the temperature and humidity sounding of the atmosphere, Izv., Atmos. Ocean. Phys., 2014a, vol. 50, no. 3, pp. 330–336.CrossRefGoogle Scholar
  10. 10.
    Polyakov, A.V., Timofeyev, Yu.M., and Virolainen, Ya.A., Comparison of different techniques in atmospheric temperature–Humidity sensing from space, Int. J. Remote Sens., 2014b, vol. 35, no. 15, pp. 5899–5912.Google Scholar
  11. 11.
    Polyakov, A.V., Timofeyev, Yu.M., Virolainen, Ya.A., Uspensky, A.B., Zavelevich, F.S., Golovin, Yu.M., Kozlov, D.A., Rublev, A.N., and Kukharsky, A.V., Satellite atmospheric sounder IRFS-2 1. Analysis of outgoing radiation spectra measurements, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 9, pp. 1185–1191.CrossRefGoogle Scholar
  12. 12.
    Pougatchev, N., August, T., Calbet, X., Hultberg, T., Oduleye, O., Schlussel, P., Stiller, B., Germain, K.St., and Bingham, G., IASI temperature and water vapor retrievals—Error assessment and validation, Atmos. Chem. Phys., 2009, no. 9, pp. 6453–6458.Google Scholar
  13. 13.
    Rodgers, C.D., Inverse Methods for Atmospheric Sounding. Theory and Practice, Singapore: World Scientific, 2000, vol. 2.CrossRefGoogle Scholar
  14. 14.
    Sun, B., Reale, A., Seidel, D.J., and Hunt, D.C., Comparing radiosonde and COSMIC atmospheric profile data to quantify differences among radiosonde types and the effects of imperfect collocation on comparison statistics, J. Geophys. Res., 2010, vol. 115, D23104. doi 10.1029/2010JD014457CrossRefGoogle Scholar
  15. 15.
    Timofeyev, Yu.M., Meteorologicheskoe zondirovanie atmosfery iz kosmosa (Meteorological Sounding of the Atmosphere from Space), Leningrad: Gidrometeoizdat, 1978.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Polyakov
    • 1
    Email author
  • Yu. M. Timofeyev
    • 1
  • A. B. Uspensky
    • 2
  • A. V. Kukharsky
    • 2
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Planeta State Research CenterMoscowRussia

Personalised recommendations