Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 9, pp 1244–1248 | Cite as

Determination of the Total Ozone Content in Cloudy Conditions based on Data from the IKFS-2 Spectrometer onboard the Meteor-M no. 2 Satellite

  • A. S. Garkusha
  • A. V. PolyakovEmail author
  • Yu. M. Timofeev
  • Ya. A. Virolainen
  • A. V. Kukharsky
PHYSICAL PRINCIPLES OF EARTH STUDIES FROM SPACE

Abstract

A new technique has been developed to obtain the total ozone content (TOC) under cloudy conditions from the spectra of outgoing thermal IR radiation measured by a satellite IRFS‑2 spectrometer. Analysis of the technique errors has shown that the differences between the obtained TOC and independent satellite (OMI) and ground-based (Dobson, Brewer, and M-124 instruments) measurements are usually 3–5%. The highest differences (up to 10%) are observed in the southern polar latitudes in the presence of an ozone hole over Antarctica. IRFS‑2 allowed the study of ozone miniholes over Russia in the first quarter of 2016. The measurements show an almost twofold decrease in TOC on certain days.

Keywords:

ozonosphere remote sensing in cloudy conditions total ozone Meteor-M no. 2 IKFS-2 device validation 

Notes

ACKNOWLEDGMENTS

The work was carried out at St. Petersburg State University under the financial support of the Russian Science Foundation (grant no. 14-17-00096).

REFERENCES

  1. 1.
    Asmus, V.V., Timofeyev, Yu.M., Polyakov, A.V., Uspenskiy, A.B., Golovin, Yu.M., Zavelevich, F.S., Kozlov, D.A., Rublev, A.N., Kukharskii, A.V., Pyatkin, V.P., and Rusin, E.V., Atmospheric temperature sounding with the Fourier spectrometer, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 4, pp. 428–432.CrossRefGoogle Scholar
  2. 2.
    Boynard, A., Hurtmans, D., Koukouli, M.E., Goutail, F., Bureau, J., Safieddine, S., Lerot, C., Hadji-Lazaro, J., Pommereau, J.-P., Pazmino, A., Zyrichidou, I., Balis, D., Barbe, A., Mikhailenko, S.N., Loyola, D., Valks, P., Roozendael, M.V., Coheur, P.-F., and Clerbaux, C., Seven years of IASI ozone retrievals from FORLI: Validation with independent total column and vertical profile measurements, Atmos. Meas. Tech. Discuss., 2016. doi 10.5194/amt-2016-11Google Scholar
  3. 3.
    Garkusha, A.S., Polyakov, A.V., Timofeyev, Yu.M., and Virolainen, Ya.A., Determination of the total ozone content from data of satellite IR Fourier-spectrometer, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 4, pp. 433–440.CrossRefGoogle Scholar
  4. 4.
    Golovin, Yu.M., Zavelevich, F.S., Nikulin, A.G., Kozlov, D.A., Monakhov, D.O., Kozlov, I.A., Arkhipov, S.A., Tselikov, V.A., and Romanovskii, A.S., Spaceborne infrared Fourier-transform spectrometers for temperature and humidity sounding of the Earth’s atmosphere, Izv., Atmos. Ocean. Phys., 2014, vol. 50, no. 9, pp. 1004–1015.CrossRefGoogle Scholar
  5. 5.
    Hassler, B., Petropavlovskikh, I., Staehelin, J., August, T., Bhartia, P.K., Clerbaux, C., Degenstein, D., De Maziere, M., Dinelli, B.M., Dudhia, A., Dufour, G., Frith, S.M., Froidevaux, L., Godin-Beekmann, S., Granville, J., Harris, N.R.P., Hoppel, K., Hubert, D., Kasai, Y., Kurylo, M.J., Kyrölä, E., Lambert, J.-C., Levelt, P.F., McElroy, C.T., McPeters, R.D., Munro, R., Nakajima, H., Parrish, A., Raspollini, P., Remsberg, E.E., Rosenlof, K.H., Rozanov, A., Sano, T., Sasano, Y., Shiotani, M., Smit, H.G.J., Stiller, G., Tamminen, J., Tarasick, D.W., Urban, J., Veefkind, J.P., Vigouroux, C., von Clarmann, T., von Savigny, C., Walker, K.A., Weber, M., Wild, J., and Zawodny, J.M., Past changes in the vertical distribution of ozone, Part 1: Measurement techniques, uncertainties and availability, Atmos. Meas. Tech., 2014, vol. 7, pp. 1395–1427.CrossRefGoogle Scholar
  6. 6.
    King, M.D., Platnick, S., Menzel, W.P., Ackerman, S.A., and Hubanks, P.A., Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites, IEEE Trans. Geosci. Remote Sens., 2013, vol. 51, no. 7, pp. 3826–3852.CrossRefGoogle Scholar
  7. 7.
    McPeters, R.D., Frith, S., and Labow, G.J., OMI total column ozone: Extending the long-term data record, Atmos. Meas. Tech., 2015, vol. 8, pp. 4845–4850.CrossRefGoogle Scholar
  8. 8.
    Polyakov, A.V., Timofeyev, Yu.M., Virolainen, Ya.A., Uspensky, A.B., Zavelevich, F.S., Golovin, Yu.M., Kozlov, D.A., Rublev, A.N., and Kukharsky, A.V., Satellite atmospheric sounder IRFS-2. 1. Analysis of outgoing radiation spectra measurements, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 9, pp. 1185–1191.CrossRefGoogle Scholar
  9. 9.
    Timofeyev, Yu.M., Satellite methods for studying the gas composition of the atmosphere, Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana, 1989, vol. 25, no. 5, pp. 451–472.Google Scholar
  10. 10.
    Virolainen, Ya.A., Timofeyev, Yu.M., Poberovskii, A.V., Polyakov, A.V., and Shalamyanskii, A.M., Empirical assessment of errors in total ozone measurements with different instruments and methods, Atmos. Oceanic Opt., 2017, vol. 30, no. 4, pp. 382–388.CrossRefGoogle Scholar
  11. 11.
    Zvyagintsev, A.M., Ivanova, N.S., Nikiforova, M.P., Kuznetsova, I.N., and Vargin, P.N., Ozone content over the Russian Federation in the first quarter of 2016, Russ. Meteorol. Hydrol., 2016, vol. 41, no. 5, pp. 373–378.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. S. Garkusha
    • 1
  • A. V. Polyakov
    • 1
    Email author
  • Yu. M. Timofeev
    • 1
  • Ya. A. Virolainen
    • 1
  • A. V. Kukharsky
    • 2
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Planeta State Research Center of Space HydrometeorologyMoscowRussia

Personalised recommendations