Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 9, pp 1223–1243 | Cite as

Global Circulation of Latent Heat in the Earth’s Atmosphere According to Data from Satellite Radiothermovision

  • D. M. ErmakovEmail author
PHYSICAL PRINCIPLES OF EARTH STUDIES FROM SPACE

Abstract

The methodical bases and some results of using satellite radiothermovision to study global atmospheric latent heat circulation according to the data of regular satellite radiothermal monitoring are described. This approach does not use an a priori model of circulation; it implements an objective procedure for the analysis of the dynamics of periodically measured fields of total precipitable water. The reconstructed directions and the values of the mean-zonal transport velocity, the average position of the thermal equator at ~5° N, and the positions of the axis of the intertropical convergence zone over individual oceans are very consistent with the known results of independent observations and numerical modeling. Some problematic aspects of the analysis procedure are discussed.

Keywords:

latent heat advection long-term satellite monitoring atmospheric dynamics satellite radiothermovision 

Notes

ACKNOWLEDGMENTS

The development of the software used in this work was supported in part by the Russian Foundation for Basic Research, grant no. 15-07-04422. We are grateful to an anonymous reviewer for helpful commentary that improved the work.

REFERENCES

  1. 1.
    Aleksanin, A.I., Aleksanina, M.G., and Karnatskiy, A.Yu., Automatic calculation of movement velocities of sea ice fields, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2011, vol. 8, no. 2, pp. 9–17.Google Scholar
  2. 2.
    Aleksanin, A.I., Aleksanina, M.G., and Karnatskiy, A.Yu., Automatic computation of sea surface velocities on a sequence of satellite images, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2013, vol. 10, no. 2, pp. 131–142.Google Scholar
  3. 3.
    Anandan, P., A computational framework and an algorithm for the measurement of visual motion, Int. J. Comput. Vision, 1989, vol. 2, no. 3, pp. 283–310.CrossRefGoogle Scholar
  4. 4.
    Armand, N.A. and Polyakov, V.M., Radio Propagation and Remote Sensing of the Environment, Boca Raton: CRC, 2004.CrossRefGoogle Scholar
  5. 5.
    Barron, J.L., Fleet, D.J., and Beauchemin, S.S., Performance of optical flow techniques, Int. J. Comput. Vision, 1994, vol. 12, no. 1, pp. 43–77.CrossRefGoogle Scholar
  6. 6.
    Bindschadler, R.A. and Scambos, T.A., Satellite-image-derived velocity field of an Antarctic ice stream, Science, 1991, vol. 252, no. 5003, pp. 242–246.CrossRefGoogle Scholar
  7. 7.
    Bobkov, V.A., Kazanskii, A.V., Morozov, M.A., and Shcheben’kova, A.A., Relaxation-contour algorithm of sea currents vectors determination by satellite images and its synoptic verification, Avtometriya, 2003, no. 1, pp. 73–81.Google Scholar
  8. 8.
    Bowen, M.M., Emery, W.J., Wilkin, J.L., Tildesley, P.C., Barton, I.J., and Knewtson, R., Extracting multiyear surface currents from sequential thermal imagery using the maximum cross-correlation technique, J. Atmos. Ocean. Technol., 2002, vol. 19, no. 10, pp. 1665–1676.CrossRefGoogle Scholar
  9. 9.
    Breaker, L.C., Krasnopolsky, V.M., Rao, D.B., and Yan, X.-H., The feasibility of estimating ocean surface currents on an operational basis using satellite feature tracking method, Bull. Am. Meteorol. Soc., 1994, vol. 75, no. 11, pp. 2085–2095.CrossRefGoogle Scholar
  10. 10.
    Budyko, M.I., Atlas teplovogo balansa zemnogo shara (Atlas of the Heat Balance of the Globe), Moscow: Mezhved. geofiz. komitet, 1963.Google Scholar
  11. 11.
    Crocker, R.I., Matthews, D.K., Emery, W.J., and Baldwin, D.G., Computing coastal ocean surface currents from infrared and ocean color satellite imagery, IEEE Trans. Geosci. Remote Sens., 2007, vol. 45, no. 2, pp. 435–447.CrossRefGoogle Scholar
  12. 12.
    Dworak, R. and Key, J.R., Twenty years of polar winds from AVHRR: Validation and comparison with ERA‑40, J. Appl. Meteorol. Climatol., 2009, vol. 48, no. 1, pp. 24–40.CrossRefGoogle Scholar
  13. 13.
    Dymnikov, V.P., Lykosov, V.N., Volodin, E.M., Galin, V.Ya., Glazunov A.V., Gritsun, A.S., Diansky, N.A., Tolstykh, M.A., and Chavro, A.I., Modeling of climate and its changes, in Sovremennyye problemy vychislitel’noy matematiki i matematicheskogo modelirovaniya (Current Problems of Computational Mathematics and Mathematical Modeling), vol. 2, Bakhvalov, N.S., Ed., Moscow: Nauka, 2005, pp. 36–173.Google Scholar
  14. 14.
    Eigenwillig, N. and Fischer, H., Determination of midtropospheric wind vectors by tracking pure water vapor structure in METEOSAT water vapor image sequences, Bull. Am. Meteorol. Soc., 1982, vol. 63, no. 1, pp. 44–57.Google Scholar
  15. 15.
    Emanuel, K., Tropical cyclones, Annu. Rev. Earth Planet. Sci., 2003, vol. 31, pp. 75–104.CrossRefGoogle Scholar
  16. 16.
    Emery, W.J., Thomas, A.C., Collins, M.J., Crawford, W.R., and Mackas, D.L., An objective method for computing advective surface velocities from sequential infrared satellite images, J. Geophys. Res., 1986, vol. 91, no. C11, pp. 12865–12878.CrossRefGoogle Scholar
  17. 17.
    Ermakov, D.M., Chernushich, A.P., Sharkov, E.A., and Shramkov, Ya.N., Possibilities of construction of short-term global radiotechnical images of the ocean–atmosphere system based on the software platform stream handler, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2011, vol. 8, no. 3, pp. 9–16.Google Scholar
  18. 18.
    Ermakov, D.M., Raev, M.D., Chernushich, A.P., and Sharkov, E.A., Problems of construction of radiothermal fields of sufficient uniformity at high spatial resolution by satellite measurements, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2013a, vol. 10, no. 1, pp. 24–33.Google Scholar
  19. 19.
    Ermakov, D.M., Raev, M.D., Chernushich, A.P., and Sharkov, E.A., Algorithm for constructing global radio-thermal fields of the ocean–atmosphere system with high spatiotemporal discretization from satellite microwave measurements, Issled. Zemli Kosmosa, 2013b, no. 4, pp. 72–82.Google Scholar
  20. 20.
    Ermakov, D.M., Sharkov, E.A., and Chernushich, A.P., Estimation of tropospheric advective latent heat fluxes over the ocean during the animation analysis of radio thermal satellite monitoring data, Issled. Zemli Kosmosa, 2014a, no. 4, pp. 32–38.Google Scholar
  21. 21.
    Ermakov, D.M., Sharkov, E.A., and Chernushich, A.P., Possibility of quantitative description of mesoscale processes in the atmosphere based on the animated analysis, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2014b, vol. 11, no. 4, pp. 153–162.Google Scholar
  22. 22.
    Ermakov, D.M., Sharkov, E.A., and Chernushich, A.P., Assessment of the accuracy of the interpolation scheme of satellite radiothermovision, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2015a, vol. 12, no. 2, pp. 77–88.Google Scholar
  23. 23.
    Ermakov, D.M., Sharkov, E.A., and Chernushich, A.P., Satellite radiothermovision of atmospheric mesoscale processes: Case study of tropical cyclones, Int. Arch. Photogramm., Remote Sens. Spatial Inf. Sci., 2015b, vol. 40, no. 7/W3, pp. 179–186.Google Scholar
  24. 24.
    Ermakov, D.M., Sharkov, E.A., and Chernushich, A.P., A multisensory algorithm of satellite radiothermovision, Izv., Atmos. Ocean. Phys., 2016a, vol. 52, no. 9, pp. 1172–1180.CrossRefGoogle Scholar
  25. 25.
    Ermakov, D.M., Sharkov, E.A., and Chernushich, A.P., Satellite radiothermovision on synoptically and climatically significant scales, Issled. Zemli Kosmosa, 2016b, no. 5, pp. 3–9.Google Scholar
  26. 26.
    Ermakov, D.M., Chernushich, A.P., and Sharkov, E.A., Geoportal of satellite radiothermovision: data, services, prospects, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2016c, vol. 13, no. 3, pp. 46–57.CrossRefGoogle Scholar
  27. 27.
    Feulner, G., Rahmstorf, S., Levermann, A., and Volkwardt, S., On the origin of the surface air temperature difference between the hemispheres in Earth’s present-day climate, J. Clim., 2013, vol. 26, no. 18, pp. 7136–7150.CrossRefGoogle Scholar
  28. 28.
    Fleet, D.J. and Weiss, Y., Optical flow estimation, in Mathematical Models in Computer Vision: The Handbook, Paragios, N., Chen, Y., and Faugeras, O., Eds., Berlin: Springer, 2005, ch. 15, pp. 239–258.Google Scholar
  29. 29.
    Garbe, C.S. and Ommer, B., Parameter estimation in image processing and computer vision, in Model Based Parameter Estimation: Theory and Applications, Bock, H.G., et al., Berlin: Springer, 2013, pp. 311–334.Google Scholar
  30. 30.
    Gledzer, E.B. and Golitsyn, G.S., Scaling and finite ensembles of particles in motion with the energy influx, Dokl. Phys., 2010, vol. 55, no. 8, pp. 369–373.CrossRefGoogle Scholar
  31. 31.
    Golitsyn, G.S., Statistics and energetics of tropical cyclones, Dokl. Earth Sci., 1997, vol. 354, no. 4, pp. 633–636.Google Scholar
  32. 32.
    Grishin, S.V., Vatolin, D.S., Lukin, A.S., Putilin, S., Yu., and Strel’nikov, K.N., An overview of block methods for evaluating motion in digital video signals, in Programmnye sistemy i instrumenty (Program Systems and Instruments), vol. 9, Moscow: VMiK MGU, 2008, pp. 50–62.Google Scholar
  33. 33.
    Grzywacz, N.M. and Yuille, A.L., A model for the estimation of local image velocity by cells in the visual cortex, Proc. R. Soc. London, 1990, vol. B239, no. 1295, pp. 129–161.CrossRefGoogle Scholar
  34. 34.
    Guan, B., Molotch, N.P., Waliser, D.E., Fetzer, E.J., and Neiman, P.J., Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements, Geophys. Res. Lett., 2010, vol. 37, no. 20, L20401. doi 10.1029/2010GL044696CrossRefGoogle Scholar
  35. 35.
    Hartman, D.L., Radiation, clouds, water vapor, precipitation, and atmospheric circulation, in EOS Science Plan: The State of Science in the EOS Program, King, M.D., Ed., NASA, 1999, pp. 39–114.Google Scholar
  36. 36.
    Haug, T., Kääb, A., and Skvarca, P., Monitoring ice shelf velocities from repeat MODIS and Landsat data—a method study on the Larsen C ice shelf, Antarctic Peninsula, and 10 other ice shelves around Antarctica, Cryosphere, 2010, vol. 4, no. 2, pp. 161–178.CrossRefGoogle Scholar
  37. 37.
    Horn, B.K.P. and Schunck, B.G., Determining optical flow, Artif. Intell., 1981, vol. 17, nos. 1–3, pp. 185–203.CrossRefGoogle Scholar
  38. 38.
    Kääb, A., Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data: Examples using digital aerial imagery and aster data, Int. Arch. Photogramm., Remote Sens. Spatial Inf. Sci., 2002, vol. 57, nos. 1–2, pp. 39–52.CrossRefGoogle Scholar
  39. 39.
    Kääb, A. and Vollmer, M., Surface geometry, thickness changes and flow fields on creeping mountain permafrost: automatic extraction by digital image analysis, Permafrost Periglacial Proc., 2000, vol. 11, no. 4, pp. 315–326.CrossRefGoogle Scholar
  40. 40.
    Kang, S.M. and Seager, R., Croll revisited: Why is the northern hemisphere warmer than the southern hemisphere?, Clim. Dyn., 2015, vol. 44, nos. 4–5, pp. 1457–1472.CrossRefGoogle Scholar
  41. 41.
    Key, J.R., Santek, D., Velden, C.S., Bormann, N., Thepaut, J.-N., Riishojgaard, L.P., Zhu, Y., and Menzel, W.P., Cloud-drift and water vapor winds in the polar regions from MODISIR, IEEE Trans. Geosci. Remote Sens., 2003, vol. 41, no. 2, pp. 482–492.CrossRefGoogle Scholar
  42. 42.
    Kutuza, B.G., Yakovlev, O.I., and Danilychev, M.V., Sputnikovyi monitoring Zemli: mikrovolnovaya radiometriya atmosfery i poverkhnosti (Satellite Earth Monitoring: Microwave Radiometry of the Atmosphere and Surface), Moscow: Lenand, 2016.Google Scholar
  43. 43.
    Lazzara, M.A., Dworak, R., Santek, D.A., Hoover, B.T., Velden, C.S., and Key, J.R., High-latitude atmospheric motion vectors from composite satellite data, J. Appl. Meteorol. Climatol., 2014, vol. 53, no. 2, pp. 534–547.CrossRefGoogle Scholar
  44. 44.
    Leung, L.R. and Qian, Y., Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model, Geophys. Res. Lett., 2009, vol. 36, no. 3, L03820. doi 10.1029/2008GL036445CrossRefGoogle Scholar
  45. 45.
    Little, J.J. and Verri, A., Analysis of differential and matching methods for optical flow, in IEEE Workshop on Visual Motion, Irvine, 1989, pp. 173–180.Google Scholar
  46. 46.
    Little, J.J., Bulthoff, H.H., and Poggio, T.A., Parallel optical flow using local voting, in Proceedings of the 2nd International Conference on Computer Vision, Tampa, 1988, pp. 454–459.Google Scholar
  47. 47.
    Liu, W. and Ribeiro, E., A survey on image-based continuum-body motion estimation, Image Vision Comput., 2011, vol. 29, no. 8, pp. 509–523.CrossRefGoogle Scholar
  48. 48.
    Lucchitta, B.K. and Ferguson, H.M., Antarctica: Measuring glacier velocity from satellite images, Science, 1986, vol. 234, no. 4780, pp. 1105–1108.CrossRefGoogle Scholar
  49. 49.
    Matrosov, S.Y., Characteristics of landfalling atmospheric rivers inferred from satellite observations over the eastern North Pacific Ocean, Mon. Weather Rev., 2013, vol. 141, no. 11, pp. 3757–3768.CrossRefGoogle Scholar
  50. 50.
    Menzel, W.P., Cloud tracking with satellite imagery: from the pioneering work of Ted Fujita to the present, Bull. Am. Meteorol. Soc., 2001, vol. 82, no. 1, pp. 33–47.CrossRefGoogle Scholar
  51. 51.
    Nagel, H.-H., On the estimation of optical flow: Relations between different approaches and some new results, Artif. Intell., 1987, vol. 33, no. 3, pp. 299–324.CrossRefGoogle Scholar
  52. 52.
    Nagel, H.-H. and Enkelmann, W., An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences, IEEE Trans. Pattern Anal. Mach. Intell., 1986, vol. 8, no. 5, pp. 565–593.CrossRefGoogle Scholar
  53. 53.
    Nam, K.M., Kim, J.-S., Park, R.-H., and Shim, Y.S., A fast hierarchical motion vector estimation algorithm using mean pyramid, IEEE Trans. Circ. Syst. Video Technol., 1995, vol. 5, no. 4, pp. 344–351.CrossRefGoogle Scholar
  54. 54.
    Nerushev, A.F. and Kramchaninova, E.K., Method for determining atmospheric motion characteristics using measurements on geostationary meteorological satellites, Izv., Atmos. Ocean. Phys., 2011, vol. 47, no. 9, pp. 1104–1113.CrossRefGoogle Scholar
  55. 55.
    Newell, R.E., Newell, N.E., Zhu, Y., and Scott, C., Tropospheric rivers?—A pilot study, Geophys. Res. Lett., 1992, vol. 19, no. 24, pp. 2401–2404.CrossRefGoogle Scholar
  56. 56.
    Nieman, S.J., Menzel, W.P., Hayden, C.M., Gray, D., Wanzong, S.T., Velden, C.S., and Daniels, J., Fully automated cloud-drift winds in NESDIS operations, Bull. Am. Meteorol. Soc., 1997, vol. 78, no. 6, pp. 1121–1133.CrossRefGoogle Scholar
  57. 57.
    Palmén, E. and Newton, C.W., Atmospheric Circulation Systems: Their Structural and Physical Interpretation, New York: Academic Press, 1969.Google Scholar
  58. 58.
    Ralph, F.M. and Dettinger, M.D., Storms, floods, and the science of atmospheric rivers, EOS, Trans. Am. Geophys. Union, 2011, vol. 92, no. 32, pp. 265–266.CrossRefGoogle Scholar
  59. 59.
    Ralph, F.M., Neiman, P.J., Wick, G.A., Gutman, S.I., Dettinger, M.D., Cayan, D.R., and White, A.B., Flooding on California’s Russian river: Role of atmospheric rivers, Geophys. Res. Lett., 2006, vol. 33, no. 13, L13801. doi 10.1029/2006GL026689CrossRefGoogle Scholar
  60. 60.
    Ruzmaikin, A., Climate as a game of chance, Phys.-Usp., 2014, vol. 57, no. 3, pp. 280–291.CrossRefGoogle Scholar
  61. 61.
    Scambos, T.A., Dutkiewicz, M.J., Wilson, J.C., and Bindschadler, R.A., Application of image cross-correlation to the measurement of glacier velocity using satellite image data, Remote Sens. Environ., 1992, vol. 42, no. 3, pp. 177–186.CrossRefGoogle Scholar
  62. 62.
    Sellers, W.D., Physical Climatology, Chicago: Chicago Univ. Press, 1965.Google Scholar
  63. 63.
    Sharkov, E.A., Radioteplovoye distantsionnoye zondirovaniye Zemli: fizicheskiye osnovy (Radio Thermal Remote Sensing of the Earth: Physical Bases), vol. 1, Moscow: IKI RAN, 2014.Google Scholar
  64. 64.
    Sharkov, E.A., Global Tropical Cyclogenesis, Berlin: Springer, 2012.CrossRefGoogle Scholar
  65. 65.
    Svejkovsky, S., Sea surface flow estimation from advanced very high resolution radiometer and costal zone color scanner satellite imagery: A verification study, J. Geophys. Res., 1988, vol. 93, no. C6, pp. 6735–6743.CrossRefGoogle Scholar
  66. 66.
    Trenberth, K.E. and Caron, J.M., Estimates of meridional atmosphere and ocean heat transports, J. Clim., 2001, vol. 14, no. 16, pp. 3433–3443.CrossRefGoogle Scholar
  67. 67.
    Vastano, A.C. and Borders, S.E., Sea surface motion over an anticyclonic eddy on the Oyashio Front, Remote Sens. Environ., 1984, vol. 16, no. 1, pp. 87–90.CrossRefGoogle Scholar
  68. 68.
    Velden, C.S., Hayden, C.M., Nieman, S.J., Menzel, W.P., Wanzong, S., and Goerss, J.S., Upper-tropospheric winds derived from geostationary satellite water vapor observations, Bull. Am. Meteorol. Soc., 1997, vol. 78, no. 2, pp. 173–195.CrossRefGoogle Scholar
  69. 69.
    Velden, C.S., Daniels, J., Stettner, D., Santek, D., Key, J., Dunion, J., Holmlund, K., Dengel, G., Bresky, W., and Menzel, P., Recent innovations in deriving tropospheric winds from meteorological satellites, Bull. Am. Meteorol. Soc., 2005, vol. 86, no. 2, pp. 205–223.CrossRefGoogle Scholar
  70. 70.
    Vogel, C., Bauder, A., and Schindler, K., Optical flow for glacier motion estimation, Int. Arch. Photogramm., Remote Sens. Spatial Inf. Sci., 2012, vols. 1–3, pp. 359–364.CrossRefGoogle Scholar
  71. 71.
    Weickert, J. and Schnörr, C., A theoretical framework for convex regularizers in PDE-based computation of image motion, Int. J. Comput. Vision, 2001, vol. 45, no. 3, pp. 245–264.CrossRefGoogle Scholar
  72. 72.
    Weng, F., Zou, X., Wang, X., Yang, S., and Goldberg, M.D., Introduction to Suomi national polar-orbiting partnership advanced technology microwave sounder for numerical weather prediction and tropical cyclone applications, J. Geophys. Res., 2012, vol. 117, no. D19, D19112. doi 10.1029/2012JD018144Google Scholar
  73. 73.
    Wimmers, A.J. and Velden, C.S., Seamless advective blending of total precipitable water retrievals from polar-orbiting satellites, J. Appl. Meteorol. Climatol., 2011, vol. 50, no. 5, pp. 1024–1036.CrossRefGoogle Scholar
  74. 74.
    Wunch, C., The total meridional heat flux and its oceanic and atmospheric partition, J. Clim., 2005, vol. 18, no. 21, pp. 4374–4380.CrossRefGoogle Scholar
  75. 75.
    Yamaguchi, Y., Tanaka, S., Odajima, T., Kamai, T., and Tsuchida, S., Detection of a landslide movement as geometric misregistration in image matching of SPOT HRV data of two different dates, Int. J. Remote Sens., 2003, vol. 24, no. 18, pp. 3523–3534.CrossRefGoogle Scholar
  76. 76.
    Zhu, Y. and Newell, R.E., Atmospheric rivers and bombs, Geophys. Res. Lett., 1994, vol. 21, no. 18, pp. 1999–2002.CrossRefGoogle Scholar
  77. 77.
    Zhu, Y. and Newell, R.E., A proposed algorithm for moisture fluxes from atmospheric rivers, Mon. Weather Rev., 1998, vol. 126, no. 3, pp. 725–735.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Fryazino Branch, Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of SciencesFryazinoRussia

Personalised recommendations