Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 9, pp 1341–1352 | Cite as

Comparative Analysis of Errors in Monitoring the Earth’s Global Energy Budget by the Lunar Observatory and Orbiters

  • H. I. AbdussamatovEmail author


The errors in measurements of the energy of the reflected solar radiation and the thermal radiation emitted from Earth entering space in all directions from the top of the atmosphere are analyzed. The potentials of measurements onboard the Lunar Observatory (LO) and spacecraft (SC) on geostationary and solar-synchronous orbits and at the L1 Lagrange point of the Sun–Earth system (SEL1) are compared. To take into account the radiation from the edge of the Earth’s disk, which cannot be observed from a geostationary orbiter at all phase angles, theoretical models should be constructed. The intensity distribution of radiation reflected to space through all other directions in dependence on the surface type, the radiation incidence angle, and the observation angle is also modeled. The actual inaccuracy of these methods is approximately 1%. At the SEL1 point, a SC may simultaneously observe the whole surface of the planet only at a phase angle α = 0° and only in the periods when the Moon does not eclipse the Earth’s disk. To take into account the radiation reflected to space at all other phase angles, it is necessary to construct theoretical models. This fact, as well as the lack of observations during lunar eclipses of the Earth, is connected with large errors in the required quantities. The system of two optical robotic telescopes mounted on the LO will sequentially survey the Earth’s surface almost in all ranges of phase angles. The annual averages of the Bond albedo and the emitted thermal radiation of the Earth as a planet determined at the LO and the corresponding deviations of the annual average global energy budget of the planet from the equilibrium state will be almost an order of magnitude more accurate than those determined from the data of any orbiter.


Lunar Observatory geostationary satellite solar-synchronous satellite Lagrange point L1 optical telescope geometric albedo Bond albedo thermal radiation global energy budget phase angle 



This study was supported in part by Fundamental Research Program 28 of the Presidium of the Russian Academy of Sciences (“Outer Space: Studies of Fundamental Processes and Their Interrelations”).


  1. 1.
    Abdussamatov, H.I., Long-term variations in the integral radiation flux and possible temperature changes in the solar core, Kin. Phys. Celest. Bodies, 2005, vol. 21, no. 6, pp. 328–332.Google Scholar
  2. 2.
    Abdussamatov, H.I., Bicentennial decrease in the solar constant leads to the Earth’s unbalanced heat budget and deep climate cooling, Kin. Phys. Celest. Bodies, 2012, vol. T. 28, no. 2, pp. 62–68.Google Scholar
  3. 3.
    Abdussamatov, H.I., Glubokii minimum moschnosti solnechnogo izlucheniya privedet k Malomu lednikovomu periodu (A Deep Minimum of Solar Radiation Intensity Leads to Little Ice Age), St. Petersburg, Nestor-Istoriya, 2013.Google Scholar
  4. 4.
    Abdussamatov, H.I., Lunar observatory, Program no. 9 of Basic Research of the Presidium of the Russian Academy of Sciences “Experimental and Theoretical Studies Solar System Objects and Stellar Planetary Systems”, Report for 2015, pp. 312–321. sites/ Scholar
  5. 5.
    Abdussamatov, H.I., Lunar observatory for the study of the deviation of the Earth’s energy balance from the equilibrium state and the causes of climate change, Issled. Zemli iz Kosmosa, 2016a, no. 5, pp. 79–88.Google Scholar
  6. 6.
    Abdussamatov, H.I., The new Little Ice Age has started, in Evidence-Based Climate Science, Easterbrook, D.J., Ed., Elsevier, 2016, ch. 17, pp. 307–328, 2016b. doi 10.1016/B978-0-12-804588-6.00017-3.Google Scholar
  7. 7.
    Abdussamatov, H.I., Lunnaya observatoriya dlya issledovanii klimata Zemli v epokhu glubokogo pokholodaniya (Lunar Observatory for the Earth’s Climate Studies in the Deep Cooling Period), St. Petersburg: Nauka, 2017a.Google Scholar
  8. 8.
    Abdussamatov, H.I., Lunar observatory for studying the deviation of the Earth’s energy balance from the equilibrium state and the causes of climate changes, 2017b. pdf.Google Scholar
  9. 9.
    Abdussamatov, H.I., Bogoyavlenskii, A.I., Khankov, S.I., and Lapovok, Y.V., The influence of the atmospheric transmission for the solar radiation and Earth’s surface radiation on the Earth’s climate, J. Geogr. Inf. Syst., 2010, no. 2, pp. 194–200.Google Scholar
  10. 10.
    Abdussamatov, H.I., Lapovok, Y.V., and Khankov, S.I., Monitoring of the Earth’s energy balance from the Lagrangian point L1, J. Opt. Technol., 2014, vol. 81, no. 1, pp. 18–23.CrossRefGoogle Scholar
  11. 11.
    Abdussamatov, H.I., Lapovok, Y.V., and Khankov, S.I., Influence of the cryosphere and the area of the Earth’s cloud cover on the change in its energy balance and global climate, Vestn. Mezhdunar. Akad. Kholoda, 2015, no. 1, pp. 61–64.Google Scholar
  12. 12.
    CLARREO, Climate absolute radiance and refractivity observatory, 2017. clima-te-absolute-radiance-and-refractivity-observatory; Scholar
  13. 13.
    DSCOVR, Deep space climate observatory, 2017. https://; Observatory.Google Scholar
  14. 14.
    Earth observatory, Looking at the Moon to better see the Earth, 2017. view.php?id=90764&src=eoa-iotd.Google Scholar
  15. 15.
    EOS, The Earth observing system of environmental satellites, 2017. TerraAquaAura.html.Google Scholar
  16. 16.
    Exoplanets, Seager, S., Ed., Univ. Arizona Press, 2010, pp. 425–526.Google Scholar
  17. 17.
    Geostationary Orbit, 2017. Deep_Space_Climate_Observatory.Google Scholar
  18. 18.
    Gold black deposition, 2014. Scholar
  19. 19.
    Harries, J.E., Russell, J.E., Hanafin, J.A., Brindley, H., Futyan, J., Rufus, J., Kellock, S., Matthews, G., Wrigley, R., Last, A., Mueller, J., Mossavati, R., Ashmall, J., Sawyer, E., Parker, D., Caldwell, M., Allan, P.M., Smith, A., Bates, M.J., Coan, B., Stewart, B.C., Lepine, D.R., Cornwall, L.A., Corney, D.R., Ricketts, M.J., Drummond, D., Smart, D., Cutler, R., Dewitte, S., Clerbaux, N., Gonzalez, L., Ipe, A., Bertrand, C., Joukoff, A., Crommelynck, D., Nelms, N., Llewellyn-Jones, D.T., Butcher, G., Smith, G.L., Szewczyk, Z.P., Mlynczak, P.E., Slingo, A., Allan, R.P., and Ringer, M.A., The Geostationary Earth Radiation Budget (GERB) Project, Am. Meteorol. Soc., 2005, vol. 86, pp. 945–960. doi 10.1175/ BAMS-86-7-945Google Scholar
  20. 20.
    Kondratyev, K.Ya., Aktinometriya (Actinometry), Leningrad: Gidrometeorologia, 1965.Google Scholar
  21. 21.
    Leckey, J., Climate absolute radiance and refractivity observatory (CLARREO), Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., 2015, vol. XL-7/W3; 36th Int. Symp. Remote Sens. Environ. 11–15 May 2015, Berlin, 2015, pp. 213–217. doi 10.5194/isprsarchives-XL-7-W3-213-2015.10.5194/isprsarchives-XL-7-W3-213-2015Google Scholar
  22. 22.
    Loeb, N.G., Parol, F., Buriez, J.C., Vanbauce, C., et al., Toward optimal closure of the Earth’s top-of-atmosphere radiation budget, J. Clim., 2009, vol. 22, pp.  748–766.CrossRefGoogle Scholar
  23. 23.
    Nils-Axel, M., The approaching new Grand solar minimum and little ice age climate conditions, Nat. Sci., 2015, vol. 7, pp. 510–518.Google Scholar
  24. 24.
    Qiu, J., Goode, P.R., Pallé, E., Yurchyshyn, V., and Hickey, J., Montañés Rodriguez, P., Chu, M.-C., Kolbe, E., Brown, C.T., Koonin, C.T., and Koonin, S.E., Earthshine and the Earth’s albedo: 1. Earthshine observations and measurements of the lunar phase function for accurate measurements of the Earth’s bond albedo, J. Geophys. Res., 2003, vol. 108, no. D22, p. 4709.CrossRefGoogle Scholar
  25. 25.
    Stephens, G.L., Li, J., Wild, M., Clayson, C.A., Loeb, N., Kato, S., Ecuyer, T., Jr, P.W.S., Lebsock, M., and Andrews, T., An update on Earth’s energy balance in light of the latest global observations, Nat. Geosci., 2012, vol. 5, p. 691. doi 10.1038/ngeo1580CrossRefGoogle Scholar
  26. 26.
    Terra, The EOS Flagship, 2017. Scholar
  27. 27.
    Thomas, S., Priestley, K.J., Hess, P.C., Wilson, R.S., Avery, M.A., Walikainen, D.R., Szewczyk, Z.P., Cooper, D.L., and Shankar, M., Sensor performance of Clouds and the Earth’s Radiant Energy System (CERES) instruments aboard EOS Terra and Aqua spacecraft based on post-launch calibration studies, in Earth Observing Systems XIV, Butler, J.J., Xiong, X., and Gu, X., Eds., Proc. SPIE, 2009, vol. 7452, p. 74520I. doi 10.1117/12.828487Google Scholar
  28. 28.
    Trenberth, K.E., Fasullo, J.T., and Kiehl, J., Earth’s global energy budget, Bull. Am. Meteorol. Soc., 2009, vol. 90, no. 3, pp. 311–323.CrossRefGoogle Scholar
  29. 29.
    Verbiscer, A.J., Helfenstein, P., and Buratti, B.J., in Photometric properties of solar system ices, in The Science of Solar System Ices, Gudipati, M.S. and Castillo-Rogez, J., Eds., Springer, 2012, p. 49.Google Scholar
  30. 30.
    Wang, B., Lai, J., Zhao, E., Hu, H., Liu, Q., and Chen, S., Vanadium oxide microbolometer with gold black absorbing layer, Opt. Eng., 2012, vol. 51, no. 7, p. 074003. doi 10.1117/1.OE.51.7.074003CrossRefGoogle Scholar
  31. 31.
    Wielicki, B.A. Baize, R.R., Young, D.F., et al., The CLARREO Mission—Earth’s Climate Change Observations, 2016. Team_Report.pdf.Google Scholar
  32. 32.
    Wielicki, B.A., Barkstrom, B.R., Harrison, E.F., Lee, III R.B., Smith, G.L., and Cooper, J.E., Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment, Bull. Am. Meteorol. Soc., 1996, vol. 77, pp. 853–868.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Pulkovo Observatory, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations