Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 8, pp 906–910 | Cite as

A Novel Model of Quasi-Stationary Vortices in the Earth’s Atmosphere

  • O. G. OnishchenkoEmail author
  • O. A. PokhotelovEmail author
  • N. M. AstafievaEmail author


In the great variety of vortex motions in the atmosphere, concentrated vortices, attracting increased interest from the point of view of both fundamental research and practice, clearly stick out. A sufficiently precise definition of the concentrated vortex can be given for the case of an ideal fluid—it is an area localized in the space, surrounded by a potential flow and having a nonzero vorticity. Such vortices can be combined into a class of small-scale concentrated vortices including dust devils (DDs), waterspouts, fire vortices, and larger scale and more intense tornadoes. Unlike planetary-scale vortices (cyclones and anticyclones), DDs and tornadoes are small-scale vortices. DDs and tornadoes are generated in different environments (tornadoes occur in strong storm clouds), but they have much in common in regards to their structure. The speed of rotation in such vortices reaches the maximum value at a characteristic radius and tends to zero when approaching the center. The rotation speed in them has much in common with the rotation speed in stationary Rankine or Burgers vortices. This work is devoted to the study of a novel low-parameter model of stationary vortices. The model is most suitable for describing concentrated vortices in the Earth’s atmosphere. Within the framework of ideal hydrodynamics, a new model of thin vortex filaments is constructed at heights that are small when compared to the vertical scale of the Earth’s atmosphere. Unlike Rankine and Burgers vortices, it allows one to describe the structure limited in the radial direction. Quasi-stationary vortices in such a model arise as a result of the balance of two effects: the concentration of vertical vorticity to the center and the advection of the vortex motion in the vertical direction.


vortices models of vortices nonlinear structures ideal hydrodynamics 



This work was carried out within the scope of Program 28 of the Presidium of the Russian Academy of Sciences and state contract for the Schmidt Institute of Physics of the Earth.


  1. 1.
    Balme, M. and Greeley, R., Dust devils on earth and mars, Rev. Geophys., 2006, vol. 44, RG3003.CrossRefGoogle Scholar
  2. 2.
    Burgers, J.M., A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., 1948, vol. 1, pp. 171–199.CrossRefGoogle Scholar
  3. 3.
    Church, C.R., Baker, G.L., and Agee, E.M., Characteristics of tornado-like vortices as a function of swirl ratio: A laboratory investigation, J. Atmos. Sci., 1979, vol. 36, no. 9, pp. 1975–1976.CrossRefGoogle Scholar
  4. 4.
    Dolzhanskii, F.V., Krymov, V.A., and Manin, D.Yu., Stability and quasi-two-dimensional vortex structures of shear flows, Phys.-Usp., 1990, vol. 33, no. 7, pp. 495–520.Google Scholar
  5. 5.
    Hess, G.D. and Spillane, K.T., Characteristics of dust devils in Australia, J. Appl. Meteorol., 1990, vol. 29, pp. 498–507.CrossRefGoogle Scholar
  6. 6.
    Howells, P.C., Rotunno, R., and Smith, R.K., A comparative study of atmospheric and laboratory analogue numerical tornado-vortex models, Q. J. R. Meteorol. Soc., 1988, vol. 114, pp. 801–822.CrossRefGoogle Scholar
  7. 7.
    Idso, S.B., Tornado or dust devil: The enigma of desert whirlwinds, Am. Sci., 1974, vol. 62, pp. 530–541.Google Scholar
  8. 8.
    Idso, S.B., Tornado-like dust devils, Weather, 1975, vol. 30, pp. 115–117.CrossRefGoogle Scholar
  9. 9.
    Kurgansky, M.V., A simple model of dry convective helical vortices (with applications to the atmospheric dust devil), Dyn. Atmos. Oceans, 2005, vol. 40, pp. 151–162.CrossRefGoogle Scholar
  10. 10.
    Kurgansky, M.V., Steady-state properties and statistical distribution of atmospheric dust devils, Geophys. Res. Lett., 2006, vol. 33, L19S06.CrossRefGoogle Scholar
  11. 11.
    Kurgansky, M., Lorenz, R., Renno, N., Takemi, T., Wei, W., and Gu, Z., Dust devil steady-state structure from a fluid dynamics perspective, Space Sci. Rev., 2016, vol. 203, nos 1–4, pp. 209–244.CrossRefGoogle Scholar
  12. 12.
    Lamb, H., Hydrodynamics, New York: Dover, 1945; Moscow–Leningrad: OGIZ GITTL, 1947.Google Scholar
  13. 13.
    Leovy, C., Devils in the dust, Nature, 2003, vol. 424, p. 1008.CrossRefGoogle Scholar
  14. 14.
    Mullen, J.B. and Maxworthy, T., A laboratory model of dust devil vortices, Dyn. Atmos. Oceans, 1977, vol. 1, pp. 181–214.CrossRefGoogle Scholar
  15. 15.
    Nolan, D.S. and Farrell, B.F., The structure and dynamics of tornado-like vortices, J. Atmos. Sci., 1999, vol. 56, pp. 2908–2936.CrossRefGoogle Scholar
  16. 16.
    Onishchenko, O.G., Pokhotelov, O.A., and Astaf’eva, N.M., Generation of large-scale eddies and zonal winds in planetary atmospheres, Phys.-Usp., 2008, vol. 51, no. 6, pp. 577–590.CrossRefGoogle Scholar
  17. 17.
    Onishchenko, O.G., Pokhotelov, O.A., and Astaf’eva, N.M., Convective cells of inner gravity waves in the Earth’s atmosphere with zonal wind, Geofiz. Issled., 2013a, vol. 14, no. 3, pp. 5–9.Google Scholar
  18. 18.
    Onishchenko, O., Pokhotelov, O., and Fedun, V., Convective cells of inertial gravity waves in the Earth’s atmosphere with finite temperature gradient, Ann. Geophys., 2013b, vol. 31, pp. 459–462. doi doi 10.5194/angeo-31-459-2013CrossRefGoogle Scholar
  19. 19.
    Onishchenko, O.G., Pokhotelov, O.A., and Fedun, V., Convection cells of internal gravity waves in the terrestrial atmosphere, Dokl. Earth Sci., 2014a, vol. 454, no. 1, pp. 37–39.CrossRefGoogle Scholar
  20. 20.
    Onishchenko, O., Horton, W., Pokhotelov, O., and Stenflo, L., Dust devil generation, Phys. Scr., 2014b, vol. 89, no. 7, 075606.CrossRefGoogle Scholar
  21. 21.
    Oseen, C.W., Über Wirbelbewegung in einer reibenden Flüssigkeit, Ark. F. Mat. Astron. Fys., 1912, vol. 7, no. 14, pp. 1–13.Google Scholar
  22. 22.
    Raasch, S. and Franke, T., Structure and formation of dust devil-like vortices in the atmospheric boundary layer: A high resolution numerical study, J. Geophys. Res., 2011, vol. 116, D16120. doi 10.1029/2011JD016010CrossRefGoogle Scholar
  23. 23.
    Rankine, W.J.M., A Manual of Applied Mechanics, London: Ch. Griffin and Comp. Ltd., 1901.Google Scholar
  24. 24.
    Ringrose, T.J., Inside dust devils, Astron. Geophys., 2005, vol. 46, pp. 5.16–5.19.Google Scholar
  25. 25.
    Trapp, R.J. and Fiedler, B.H., Tornado-like vortex genesis in a simplified numerical model, J. Atmos. Sci., 1995, vol. 52, pp. 3757– 3778.CrossRefGoogle Scholar
  26. 26.
    Vatistas, G.H., Kozel, V., and Minh, W.C., Simpler model for concentrated vortices, Exp. Fluids, 1991, vol. 11, pp. 73–76.CrossRefGoogle Scholar
  27. 27.
    Zhao, Y.Z., Gu, Z.L., Yu, Y.Z., Ge, Y., Li, Y., and Feng, X., Mechanism and large eddy simulation of dust devils, Atmos.-Ocean, 2004, vol. 42, no. 1, pp. 61–84. doi 10.3137/ao.420105CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Schmidt Joint Institute of Physics of the Earth, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Space Research, Russian Academy of SciencesMoscowRussia

Personalised recommendations