Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 8, pp 941–953 | Cite as

Native and Rare-Earth Metals on the Earth, the Moon, in Tektites, and Meteorites

  • A. V. ManankovEmail author


In order to develop astromineralogy, an emerging new research area, the results of studying the features of mineral genesis and geochemistry of native (SE) and rare-earth (TR) elements in host rocks of the biosphere outer shells and in space objects are presented. A set of methods, such as modern methods of astromineralogy, as well as modeling and the applied system analysis, is used. The theoretical models and hypotheses of the mechanisms of substructure-phase transformations of TR and SE elements under the influence of specific physicochemical conditions on the Moon and in space objects in comparison with the terrestrial objects are proposed. The theoretical importance and a practical role of intergeosphere criteria and systemology are shown. The material differences are substantiated between terrestrial and space objects that constitute seven groups of indicating criteria, whose complex can be used for objects of unknown origin: (1) geological and structural features—only the geological environment contains specific rocks of the catastrophite class, which always overlie basement rocks with angular unconformity and have signs of cooling and a reducing environment similar to the space environment; (2) petrochemical composition; (3) impurity elements; (4) the quantity, composition, morphology and structure of the SE; (5) the isotopic composition of carbon 14C; (6) composition of chemical elements of the TR group and radionuclides; and (7) different proton radiation power in the composition of solar wind under conditions of high vacuum in space (exotic micromixtures of native W and low-melting Sb, etc., in regolith) and the Earth’s atmosphere. New knowledge is applicable for the development of planetology, the theory of intergeosphere processes, the expansion of the resource base on the Moon, and the provision of space safety for the biosphere. The connection between catastrophic processes in the geoactive zones of the Earth and collision zones with the dispersion of minerals and rocks to nanosized suspensions and the formation of electrets in carrying over anomalous amounts of dust and oxides of C, N, and S to the atmosphere is discussed. These results are laid in the foundation of the method for earthquake prediction (patent no. 2516617…, 2014). A new class of multifunctional glass-crystalline materials, sikams (certificate no. 92355), which are also obtained from rocks comparable to lunar basalts in petrogeochemical features, is discovered.


seismotomography physical geochemistry coherence plasma electrets solitons space objects intergeosphere interactions astromineralogy Earth self-development catastrophe prediction 



  1. 1.
    Adams, J.A.S., Uranium contents and alpha particle activities of tektites, in XX Int. Geol. Congress, 1956.Google Scholar
  2. 2.
    Antonangeli, D., Morard, G., Schmerr, N.C., et al., Toward a mineral physics reference model for the Moon’s core, Proc. Natl. Acad. Sci., 2015, vol. 112, no. 13, pp. 3916–3919.CrossRefGoogle Scholar
  3. 3.
    Baker, G., Tektites, Mem. Natl. Museum Victoria, 1959, vol. 23.CrossRefGoogle Scholar
  4. 4.
    Bove, L.E., Goal, R., Raza, Z., et al., Effect of salt on the H-bond symmetrization in ice, Proc. Natl. Acad. Sci., 2015, vol. 112, no. 27, pp. 8216–8220.CrossRefGoogle Scholar
  5. 5.
    Chen, B., Li, J., and Hauck, S.A., Non-ideal liquidus curve in the Fe–S system and mercury’s snowing core, Geophys. Res. Lett., 2008, vol. 35, L07201.Google Scholar
  6. 6.
    Chuvashov, B.I., Polycyclic horst-and-graben model of the development of Paleozoic mobile belts on the example of West Siberia and the Urals—an alternative to the “global plate tectonics”, in Bio- i litostratigraficheskie rubezhi v istorii Zemli: Tr. Mezhdunar. nauch. konf. (Bio- and Litho-Stratigraphy Frontiers in the Earth’s History: Proceedings of the International Conference), Tyumen’, 2008, pp. 3–16.Google Scholar
  7. 7.
    Dauviller, A., Sur l’origine cosmique des tektites, C. R. Acad. Sci. Paris, 1964, vol. 258, no. 19.Google Scholar
  8. 8.
    Dobretsov, N.L., Vvedenie v global’nuyu petrologiyu (Introduction to Global Petrology), Novosibirsk: Nauka, 1980.Google Scholar
  9. 9.
    Dushin, V.A., Magmatizm i geodinamika paleokontinental’nogo sektora severa Urala (Magnetism and Geodynamics of the Paleocontinental Sector of Northern Urals), Moscow: Nedra, 1997.Google Scholar
  10. 10.
    Geodinamika, magmatizm i metallogeniya Kolyvan’–Tomskoi skladchatoi zony (Geodynamic, Magnetism, and Metallogeny of the Kolyvan’–Tomsk Folded Zone), Sotnikov, V.I., Fedoseev, G.S., Kungurtsev, L.V., et al., Eds., Novosibirsk: SO RAN, NITs OIGGM, 1999.Google Scholar
  11. 11.
    Grachev, A.F., Korchagin, O.A., Tsel’movich, V.A., and Kollmann, Kh.A., Cosmic dust and micrometeorites in the transitional clay layer at the Cretaceous–Paleogene boundary in the gams section (Eastern Alps): Morphology and chemical composition, Izv. Phys. Solid Earth, 2008, vol. 44, no. 7, pp. 555–568.CrossRefGoogle Scholar
  12. 12.
    Irifune, T., Fujino, K., and Ohtani, E., A new high pressure form of MgAl2O4, Nature, 1991, vol. 349, pp. 409–411.CrossRefGoogle Scholar
  13. 13.
    Izokh, E.P., The paradox of the age of tektites and their residual fields, Meteoritika, 1985, no. 44, pp. 127–134.Google Scholar
  14. 14.
    Izokh, E.P., Petrochemistry of basement rocks, impactites, and tektites of the Zhamanshin astrobleme, in Kosmicheskoe veshchestvo i Zemlya (Cosmic Matter and the Earth), Novosibirsk: Nauka, 1986, pp. 159–203.Google Scholar
  15. 15.
    Izokh, E.P. and Le Dyk An, Vietnamese tektites: Hypothesis on comet transport, Meteoritika, 1983, no. 42, pp. 158–169.Google Scholar
  16. 16.
    Khisina, N.R., Subsolidusnye prevrashcheniya tverdykh rastvorov porodoobrazuyushchikh mineralov (Subsolidus Transformations of Solid Solutions of Rock-Generating Minerals), Moscow: Nauka, 1987.Google Scholar
  17. 17.
    Kingma, K.J., Cohen, R.E., Hemley, R.J., and Mao, H.-K., Transformation of stishovite to a denser phase at lower-mantle pressure, Nature, 1995, vol. 374, no. 6519, pp. 243–245.CrossRefGoogle Scholar
  18. 18.
    Kondrat’ev, K.Ya. and Matveev, L.T., Basic factors governing the formation of heat island in a large city, Dokl. Earth Sci., 1999, vol. 367, no. 5, pp. 741–744.Google Scholar
  19. 19.
    Kopnin, S.I., Dust sound disturbances in dusty plasma and their manifestations, Extended Abstract of Cand. Sci. (Phys.–Math.) Dissertation, Dolgoprudnyi, 2008.Google Scholar
  20. 20.
    Korchagin, O.A. and Tsel’movich, V.A., Cosmic particles (micrometeorites) and nanospheres from the Cretaceous-Paleogene (K/T) boundary clay layer at the Stevns Klint Section, Denmark, Dokl. Earth Sci., 2011, vol. 437, no. 2, pp. 449–454.CrossRefGoogle Scholar
  21. 21.
    Korzhinskii, D.S., Teoriya metasomaticheskoi zonal’nosti (Theory of Metasomatic Zonality), Moscow: Nauka, 1982.Google Scholar
  22. 22.
    Krinov, E.L., Osnovy meteoritiki (Basics of Meteoritics), Moscow: Gostekhizdat, 1955.Google Scholar
  23. 23.
    Manankov, A.V., On the liquation mechanism in silicate systems, Dokl. Akad. Nauk SSSR, 1979, vol. 244, no. 6, pp. 1461–1464.Google Scholar
  24. 24.
    Manankov, A.V., On the mechanism and kinetics of crystallization of magmatic melts of basic composition, Dokl. Akad. Nauk SSSR, 1980, vol. 251, no. 6, pp. 1472–1476.Google Scholar
  25. 25.
    Manankov, A.V., Stages of phase transitions in tektite melts, in II Mezhdunar. konf. po prirodnym steklam (The II Int. Conf. on Natural Glass), Prague, 1987, p. 50.Google Scholar
  26. 26.
    Manankov, A.V., Astromineralogy—a new integral science for solving mineral and environmental problems of the biosphere, in Petrologiya magmaticheskikh i metamorficheskikh kompleksov: Materialy Vseros. konf. s mezhdunar. uchastiem (Petrology of Magmatic and Metamorphic Systems: Proceedings of the All-Union Conference with International Participation), Tomsk, 2016, vol. 8, pp. 204–211.Google Scholar
  27. 27.
    Manankov, A.V., Geologicheskaya sreda i tekhnosfera: Kvantovye protsessy i zhizn'. Samoorganizatsiya (Geological Environment and Technosphere: Quantum Processes and Life. Self-Organization), Tomsk: TGASU, 2012.Google Scholar
  28. 28.
    Manankov, A.V., Results from the study of fast geological processes, in Razvitie mineral’no-syr’evoi bazy Sibiri: ot V.A. Obrucheva, M.A. Usova, N.N. Urvantseva do nashikh dnei: Materialy foruma (Development of Mineral Resources in Siberia: From V.A. Obruchev, M.A. Usov, and N.N. Urvantsev to Our Times), Tomsk: TPU, 2013, pp. 251–260.Google Scholar
  29. 29.
    Manankov, A.V. and Boroznovskaya, N.N., Differentiation of magma in lava streams and plagioclase luminescence, Dokl. Akad. Nauk SSSR, 1982, vol. 263, no. 3, pp. 685–688.Google Scholar
  30. 30.
    Manankov, A.V. and Karaush, S.A., RF Patent 2525076, Byull. Izobret., 2014, no. 22.Google Scholar
  31. 31.
    Manankov, A.V. and Loktyushin, A.A., RF Patent 1787965, Byull. Izobret., 1993, no. 2.Google Scholar
  32. 32.
    Manankov, A.V. and Osipov, P.V., RF Patent 1586082, Byull. Izobret., 1990.Google Scholar
  33. 33.
    Manankov, A.V. and Safonova, E.V., Geochemistry and metallogeny of weathering crust, in Problemy i perspektivy razvitiya mineral’no-syr’evoi bazy i predpriyatii TEK Sibiri: Materialy Mezhregion. nauch.-prakt. konf. (Problems and Prospects of Development of Mineral Resources and Fuel and Energy Enterprises in Siberia: Proceedings of the International Scientific and Practical Conference), Tomsk, 2007, pp. 198–202.Google Scholar
  34. 34.
    Manankov, A.V. and Safonova, E.V., History of the formation of regional weathering crust of West Siberia under the influence of different-age water-carrying layers and its metallogenic significance, in Rogovskie chteniya: Materialy Vseros. konf. s mezhdunar. uchastiem, posvyashch. 85-letiyu so dnya rozhdeniya prof. G.M. Rogova (Rogov Readings: Proceedings of the All-Russian Conference with International Participation, Commemorating the 85th Anniversary of Prof. G. M. Rogov), Tomsk: TGASU, 2015, pp. 116–120.Google Scholar
  35. 35.
    Manankov, A.V. and Safonova, E.V., Study of the processes of sitallization in pyroxene glasses by electric conductance, HARPS, and radio emission, in Materialy Vsesoyuz. simp. “Katalizirovannaya kristallizatsiya stekol” (Proceedings of the All-Russian Symposium “Catalyzed Glass Crystallization”), Moscow, 1978, pp. 31–33.Google Scholar
  36. 36.
    Manankov, A.V. and Sal’nikov, V.N., Electrical conductance and electromagnetic emission of pyroxene glasses and sitalls at high temperatures, Fiz. Khim. Stekla, 1996, vol. 22, no. 4, pp. 528–535.Google Scholar
  37. 37.
    Manankov, A.V. and Sal’nikov, V.N., Electrophysical methods for studying minerals and composite materials, in Sovremennye metody mineralogo-geokhimicheskikh issledovanii kak osnova vyyavleniya novykh tipov rud i tekhnologii ikh kompleksnogo osvoeniya (Modern Methods of Mineral and Geochemical Studies as a Basis for Revealing New Types of Ores and Technologies for Their Integrated Exploration), St. Petersburg, SPbGU, 2006, pp. 196–198.Google Scholar
  38. 38.
    Manankov, A.V. and Sharapov, V.N., Mechanism and kinetics of the separation of magnetite in basite melts, Dokl. Akad. Nauk SSSR, 1983, vol. 272, no. 3, pp. 670–675.Google Scholar
  39. 39.
    Manankov, A.V. and Sharapov, V.N., Kinetika fazovykh perekhodov v bazitovykh rasplavakh i magmakh (The Kinetics of Phase Transitions in Basite Melts and Magmas), Novosibirsk: Nauka, 1985.Google Scholar
  40. 40.
    Manankov, A.V. and Sokolova, T.A., Optimization of technological parameters at the synthesis of sitalls, Izv. Akad. Nauk SSSR, Ser. Neorg. Mater., 1980, vol. 16, no. 7, pp. 1267–1271.Google Scholar
  41. 41.
    Manankov, A.V. and Vladimirov, V.M., USSR Patent 518474, Byull. Izobret., 1976, no. 23.Google Scholar
  42. 42.
    Manankov A.V., Bychkov, D.A., Strakhov, B.S., Yakovlev, V.M., and Bykov, N.E., Mineral-geochemical and experimental studies of the synthesis of petrositalls, in Mineralogiya, geokhimiya i poleznye iskopaemye Azii (Mineralogy, Geochemistry, and Mineral Resources of Asia), Tomsk, 2013, vol. 2, pp. 190–198.Google Scholar
  43. 43.
    Manankov, A.V., Kara-sal, I.D., and Kara-sal, B.K., RF Patent 2516617, Byull. Izobret., 2014, no. 14.Google Scholar
  44. 44.
    Martynov, Yu.A., Dril’, S.I., Chashchin, A.A., et al., Geochemistry of basalts from Kunashir and Iturup islands: A role for nonsubduction factors in the genesis of Kuril Island arc magmas, Geochem. Int., 2005, vol. 43, no. 4, pp. 328–3342.Google Scholar
  45. 45.
    Mason, B., Chemical composition of tektites, Nature, 1959, vol. 183, pp. 254–255.CrossRefGoogle Scholar
  46. 46.
    McDonough, W.F. and Sun, S.S., The composition of the earth, Chem. Geol., 1995, vol. 120, pp. 223–253.CrossRefGoogle Scholar
  47. 47.
    Mason, B., Melson, W., The Lunar Rocks, New York: Wiley, 1970; Moscow: Mir, 1973.Google Scholar
  48. 48.
    Montagner, J.P., Effect of a plume on long period surface waves computed with normal modes coupling, Phys. Earth Planet. Int., 2000, vol. 119, pp. 57–74.CrossRefGoogle Scholar
  49. 49.
    Naumov, V.B., Kovalenko, V.I., et al., Average concentrations of major, volatile, and trace elements in magmas of various geodynamic settings, Geochem. Int., 2004, vol. 42, no. 10, pp. 977–987.Google Scholar
  50. 50.
    Oganov, A.R., Gillan, M.J., and Price, G.D., Structural stability of silica at high pressures and temperatures, Phys. Rev., 2005, vol. 71, no. 6, pp. 64–104.CrossRefGoogle Scholar
  51. 51.
    Oreshkin, P.T., Fizika poluprovodnikov i dielektrikov (Physics of Semiconductors and Dielectrics), Moscow: Vyssh. shkola, 1977.Google Scholar
  52. 52.
    Otmakhov, V.I., Varlamova, N.V., Manankov, A.V., and Lapova, T.V., Physical and chemical studies of tektites for space monitoring, Izv. Tomsk. Politekh. Univ., 2006, vol. 309, no. 5, pp. 40–44.Google Scholar
  53. 53.
    Poltavets Z.I. and Nechkin, G.S., Rare Earth and scattered elements in skarn– magnetite deposits of the Urals and Turgay, in Ezhegodnik-2009. Tr. IGG UrO RAN (Annual Book 2009, Proceedings of the Inst. Geol. Geophys., Urals Branch, RAS), 2010, vol. 157, pp. 237–240.Google Scholar
  54. 54.
    Pushcharovsky, Yu.M. and Pushcharovsky, D.Yu., New insight into the composition and the structure of the deep layers of the terrestrial planets, Moscow Univ. Geol. Bull., 2016, vol. 71, no. 1, pp. 1–7.CrossRefGoogle Scholar
  55. 55.
    Pushcharovsky, Yu.M., On the three paradigms in geology, Geotektonika, 1995. № 1. S. 4-11.Google Scholar
  56. 56.
    Pushcharovsky, Yu.M. and Pushcharovsky, D.Yu., Geologiya mantii Zemli (Geology of the Earth’s Mantle), Moscow: GEOS, 2010.Google Scholar
  57. 57.
    Sal’nikov, V.N. and Manankov, A.V., Determination of conversion temperatures in technical and pyroxene glasses by conductance recording synchronously with pulse electromagnetic radiation, Tr. Ukr. Inst. Stekla, 1994, pp. 159–170.Google Scholar
  58. 58.
    Sal’nikov, V.N., Aref’ev, K.P., Zavertkin, S.D., et al., Samoorganizatsiya fiziko-khimicheskikh protsessov v dielektricheskikh prirodno-tekhnogennykh sredakh (Self-Organization Physical and Chemical Processes in Dielectric Natural and Technogenic Media), Tomsk: STT, 2006.Google Scholar
  59. 59.
    Savchenko, K.N., Kosmogoniya Kanta i problema proiskhozhdeniya malykh tel Solnechnoi sistemy (Kant’s Cosmogony and the Problem of Origination of Small Bodies in the Solar Ssyetem), Leningrad: Nauka, 1975.Google Scholar
  60. 60.
    Sklyarov, E.V., Interpretatsiya geokhimicheskikh dannykh: Ucheb. posobie (Interpretation of Geochemical Data: A Textbook), Moscow: Internet Inzhiniring, 2001. Sun, S.S. and McDonough, W.F., Chemical and isotopic systematic of oceanic basalts: Implications for mantle composition and processes, in Magmatism in Oceanic Basalts, Saunders, A.D. and Norry, M.J., Eds., pp. 313–345.Google Scholar
  61. 61.
    Taleno, S., Hirose, K., Ohishi, Y., and Tatsumi, Y., The structure of iron in Earth’s inner core, Science, 2010, vol. 330, no. 6002, pp. 359–361.CrossRefGoogle Scholar
  62. 62.
    Tsel’movich, V.A., On the meteorite origin of native metals in residual rocks, in Diagnostika vulkanogennykh produktov v osadochnykh tolshchakh (Diagnostics of Volcanic Products in Residual Shocks), Syktyvkar, 2012, pp. 190–193.Google Scholar
  63. 63.
    Usov, M.A., Catastrophes in the Earth’s history, Priroda, 1916, no. 4, pp. 438–462.Google Scholar
  64. 64.
    Usov, M.A., Geotectonic theory of self-evolution of the Earth’s matter, Izv. Akad. Nauk SSSR, Ser. Geol., 1940, no. 1, pp. 3–11.Google Scholar
  65. 65.
    USSR Inventor’s Certificate no. 92355, 1990.Google Scholar
  66. 66.
    Vinogradov, A.P., Average contents of chemical elements in major types of erupted rocks of the Earth’s core, Geokhimiya, 1962, no. 7, pp. 555–571.Google Scholar
  67. 67.
    Vorob’ev, A.A., On the possibility of electric discharges in the Earth’s interiors, Geol. Geofiz., 1970, no. 12, pp. 3–13.Google Scholar
  68. 68.
    Zavertkin, S.D., Sal’nikov, V.N., Aref’ev, K.P., Elektromagnitnaya emissiya pri fazovykh perekhodakh v mineralakh i dielektricheskikh materialakh (Electromagnetic Emission at Phase Transitions in Minerals and Dielectric Materials), Tomsk: TPU, 2010.Google Scholar
  69. 69.
    Zigel’, F.Yu., Veshchestvo Vselennoi (The Matter of the Universe), Moscow: Khimiya, 1982.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.National Research Tomsk State UniversityTomskRussia

Personalised recommendations