Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 8, pp 932–940 | Cite as

Inclinometric Observations at the Korchagin Deposit

  • Yu. O. KuzminEmail author
  • A. V. Deshcherevskii
  • E. A. Fattakhov
  • D. K. Kuzmin
  • A. A. Kazakov
  • D. V. Aman


The aim of this work is to analyze the results of geodeformation monitoring at the Korchagin oil, gas, and condensate deposit in the Caspian Sea. The inclinations of the base of the offshore platform are registered using Inklin-2 AGS-5 inclinometers. The software for collection and storage of data is elaborated at the Shirshov Institute of Oceanology, Russian Academy of Sciences. The time series of inclinometric observations were processed using the WinABD package designed at the Shmidt Institute of Physics of the Earth, Russian Academy of Sciences. The tidal and seiche impacts are estimated and the dynamics of time change of the position of the exploitation platform is described. The periodic oscillations of the heel and difference with periods of 24 and 12 h and mean annual amplitude of 0.005° and 0.001°, respectively, are probably related to breeze impacts. It is shown that gravitation tidal effects (lunar–solar static and marine tides) have a minor effect on platform inclination. The results of mathematic modeling of seafloor deformations induced by the exploitation of the deposit show a maximum settling amplitude of ~3 mm. A model of a deformed reservoir–reservoir with Neocomian and Volgian oil-saturated reservoirs is considered. The assessment of the heel and difference in the platform area showed that exploitation-related heel can reach 6 × 10–8 (16 angular ms), whereas the difference is 8 × 10–8 (12 angular ms). Both values are much lower than the resolution of inclinometers and observing deformations caused by other reasons. The absence of critical heel and difference of the exploitation platform is substantiated. Numerical procedures allow a detailed analysis of present-day geodynamic processes, which are caused by the exploitation of the Korchagin deposit under constant monitoring regime.


offshore hydrocarbon deposits geodynamic observations monitoring inclinometer deformation processes technogenic drawdowns modeling time series analysis omissions of observations spectral-periodogram analysis lunar–solar tides seiches Caspian Sea 



  1. 1.
    Aleshin, I.M., Ivanov, S.D., Koryagin, V.N., Kuz-min, Yu.O., Perederin, F.V., Shirokov, I.A., Fattakhov, E.A., Online publication of tiltmeter data based on the SeedLink protocol, Seism. Instrum., 2017, vol. 54, no. 3, pp. 254–259. doi 10.21455/si2017.3-3CrossRefGoogle Scholar
  2. 2.
    Bolgov, M.V., Krasnozhon, G.F., and Lyubushin, A.A., Kaspiiskoe more: Ekstremal’nye gidrologicheskie sobytiya (The Caspian Sea: Extreme Hydrological Events), Khublaryan, M.G., Ed., Moscow: Nauka, 2007.Google Scholar
  3. 3.
    Deshcherevskii, A.V. and Sidorin, A.Ya., Nekotorye voprosy metodiki otsenki srednesezonnykh funktsii dlya geofizicheskikh dannykh (Some Problems of the Method for Estimating the Average Seasonal Functions for Geophysical Data), Moscow: OIFZ RAN, 1999.Google Scholar
  4. 4.
    Deshcherevskii, A.V. and Sidorin, A.Ya., A two component model of geophysical processes: Seasonal variations and flicker noise, Dokl. Earth Sci., 2001, vol. 376, no. 1, pp. 65–70.Google Scholar
  5. 5.
    Deshcherevskii, A.V. and Sidorin, A.Ya., A Flicker-noise problem in the study of cause-and-effect relationships between natural processes, Dokl. Earth Sci., 2003, vol. 392, no. 7, pp. 1030–1034.Google Scholar
  6. 6.
    Deshcherevskii, A.V. and Sidorin, A.Ya., Periodograms of superimposed epochs in search for hidden rhythms in experimental data time series, Seism. Instrum., 2012a, vol. 48, no. 1, pp 57–74.CrossRefGoogle Scholar
  7. 7.
    Deshcherevskii, A.V. and Sidorin, A.Ya., Comparison of periodograms of superimposed epochs and Fourier spectra of experimental series, Seism. Instrum., 2012b, vol. 48, no. 3, pp. 235–155.CrossRefGoogle Scholar
  8. 8.
    Deshcherevskii, A.V. and Zhuravlev, V.I., Testirovanie metodiki otsenki parametrov flikker-shuma (Testing the Techniques for Flicker-Noise Parameter Estimation), Moscow: OIFZ RAN, 1996.Google Scholar
  9. 9.
    Deshcherevskii, A.V., Lukk, A.A., and Sidorin, A.Ya., Flicker noise structure in the time realizations of geophysical fields, Izv., Phys. Solid Earth, 1997, vol. 32, no. 7, pp. 515–529.Google Scholar
  10. 10.
    Deshcherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., and Sidorin, A.Ya., Problems of analysis of time series with gaps and their solution methods by the WinABD software, Geofiz. Protsessy Biosfera, 2016a, vol. 15, no. 3, pp. 5–34.Google Scholar
  11. 11.
    Deshcherevskii, A.V., Zhuravlev, V.I., Nikol’skii, A.N., and Sidorin, A.Ya., Program package ABD—a universal tool for analysis of monitoring observation data, Nauka Tekhnol. Razrab., 2016b, vol. 95, no. 4, pp. 35–48. doi 10.21455/std2016.4-6Google Scholar
  12. 12.
    Deshcherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., and Sidorin, A.Ya., Technologies for analyzing geophysical time series: Part 1. Software requirements, Seism. Instrum., 2017a, vol. 53, no. 1, pp. 46–59.CrossRefGoogle Scholar
  13. 13.
    Deshcherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., and Sidorin, A.Ya., Technology for analyzing geophysical time series: Part 2. WinABD—A software package for maintaining and analyzing geophysical monitoring data, Seism. Instrum., 2017b, vol. 53, no. 3, pp. 203–223.CrossRefGoogle Scholar
  14. 14.
    Frolov, A.V., Modelirovanie mnogoletnikh kolebanii urovnya Kaspiiskogo morya: Teoriya i prilozheniya (Modeling Long-Term Oscillations of the Caspian Sea Level: Theory and Applications), Moscow: GEOS, 2003.Google Scholar
  15. 15.
    German, V.Kh., Spectral analysis of level oscillations of the Azov, Black, and Caspian seas in the frequency range from one cycle per several hours to one cycle per several days, Tr. GOIN, 1970, no. 103, pp. 52–73.Google Scholar
  16. 16.
    Khisamov, R.S., Gatiyatullin, N.S., Kuzmin, Yu.O., et al., Sovremennaya geodinamika i seismichnost' yugo-vostoka Tatarstana (Recent Geodynamics and Seismicity of Southeastern Tatarstan), Moscow: Mir, 1988.Google Scholar
  17. 17.
    Kosarev, A.N. and Tsyganov, V.F., Some statistical characteristics of oscillations in the Caspian Sea level, Meteorol. Gidrol., 1972, no. 2, pp. 49–56.Google Scholar
  18. 18.
    Kritskii, S.N., Korenistov, D.V., and Ratkovich, D.Ya., Kolebaniya urovnya Kaspiiskogo morya: Analiz rezhima i veroyatnostnyi prognoz (Oscillations in the Caspian Sea Level: Analysis of the Regime and Probabilistic Prediction), Moscow: Nauka, 1975.Google Scholar
  19. 19.
    Kuzmin, Yu.O., Sovremennaya geodinamika i otsenka geodinamicheskogo riska pri nedropol’zovanii (Recent Geodynamics and Geodynamic Risk Assessment in Natural Resources Management), Moscow: AEN, 1999.Google Scholar
  20. 20.
    Kuzmin, Yu.O., Recent geodynamics of faults and ecological–industrial safety of oil and gas objects, Geol., Geofiz. Razrab. Neft. Gaz. Mestorozhd., 2007, no. 1, pp. 33–41.Google Scholar
  21. 21.
    Kuzmin, Yu.O., Problematic issues in the study of deformation processes in recent geodynamics, Gorn. Inf.-Anal. Byull. (Nauchno-Tekh. Zh.), 2008, no. 3, pp. 98–107.Google Scholar
  22. 22.
    Kuzmin, Yu.O., Assessment of water basin bottom deposition in the case of Senoman deposit of a gas field revisited, Marksheiderskii Vestn., 2010, no. 1, pp. 53–60.Google Scholar
  23. 23.
    Kuzmin, Yu.O., Recent geodynamics of fault zones: Real time fault formation, Geodyn. Tectonophys., 2014a, vol. 5, no. 2, pp. 401–443.CrossRefGoogle Scholar
  24. 24.
    Kuzmin, Yu.O., The topical problems of identifying the results of the observations in recent geodynamics, Izv., Phys. Solid Earth, 2014b, vol. 50, no. 5, pp. 641–654.CrossRefGoogle Scholar
  25. 25.
    Kuzmin, Yu.O., Recent geodynamics of a fault system, Izv., Phys. Solid Earth, 2015, vol. 51, no. 4, pp. 480–485.CrossRefGoogle Scholar
  26. 26.
    Kuzmin, Yu.O., Recent geodynamics of dangerous faults, Izv., Phys. Solid Earth, 2016, vol. 52, no. 5, pp. 709–722.CrossRefGoogle Scholar
  27. 27.
    Kuzmin, Yu.O., Paradoxes of the comparative analysis of ground-based and satellite geodetic measurements in recent geodynamics, Izv., Phys. Solid Earth, 2017, vol. 53, no. 6, pp. 825–840.CrossRefGoogle Scholar
  28. 28.
    Kvyatkovskaya, S.S., Kuzmin, Yu.O., Nikitin, R.S., and Fattakhov, E.A., Analysis of the deformations of the ground surface on Stepnovskaya underground gas storage by methods of satellite and ground-based geodesy, Vestn. SGUGiT, 2017, vol. 22, no. 3, pp. 16–32.Google Scholar
  29. 29.
    Medvedev, I.I., Kulikov, E.A., and Rabinovich, A.B., Tides in the Caspian Sea, Oceanology (Engl. Transl.), 2017, vol. 57, no. 3, pp. 400–416.Google Scholar
  30. 30.
    Serebrennikov, M.G. and Pervozvanskii, A.A., Vyyavlenie skrytykh periodichnostei (Revealing Hidden Periodicities), Moscow: Nauka, 1965.Google Scholar
  31. 31.
    Schuster, H.G., Deterministic Chaos, Weinheim: Physik-Verlag, 1986; Moscow: Mir, 1988.Google Scholar
  32. 32.
    Zhukov, V.S., Kuzmin, Yu.O., and Poloudin, G.A., Assessment of processes of the Earth’s surface subsidence during gas field development (the test case of North-Stavropol field), Geol., Geofiz. Razrab. Neft. Gaz. Mestorozhd., 2002, no. 7, pp. 54–60.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. O. Kuzmin
    • 1
    Email author
  • A. V. Deshcherevskii
    • 1
  • E. A. Fattakhov
    • 1
  • D. K. Kuzmin
    • 2
  • A. A. Kazakov
    • 3
  • D. V. Aman
    • 3
  1. 1.Shmidt Institute of Physics of the Earth, Russian Academy of SciencesMoscowRussia
  2. 2.Mining Institute, National University of Science and Technology MISiSMoscowRussia
  3. 3.OOO LUKOIL-NizhnevolzhskneftAstrakhanRussia

Personalised recommendations