Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 8, pp 777–793 | Cite as

Experimental Studies of Aerosols in the Atmosphere of Semiarid Landscapes of Kalmykia: 1. Microphysical Parameters and Mass Concentration of Aerosol Particles

  • D. P. GubanovaEmail author
  • O. G. Chkhetiani
  • T. M. Kuderina
  • M. A. Iordanskii
  • Y. I. Obvintsev
  • M. S. Artamonova


This paper summarizes the results of long-term (2004–2016) comprehensive experimental studies of microphysical parameters and the mass concentration of aerosol particles in the atmospheric surface layer of semiarid regions of Kalmykia arranged by the Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences. Characteristic values of the mass and number concentrations of aerosol particles in the summer have been determined for different velocities. A significant decrease in the concentration of surface submicron- and micron-sized aerosols in comparison with their values observed in desert areas of Kalmykia in the 1990s has been found. Mass concentration distributions over aerosol particle fractions have been obtained. The diurnal course of the particle number concentration has been studied taking the meteorological conditions (air temperature, velocity, and humidity) and the underlying surface into consideration. The particle-size distribution functions characteristic of atmospheric aerosols in Kalmykia have been determined. The removal of particles has been coupled with the main meteorological parameters in the atmospheric near-surface layer. A large number of submicron-sized particles have been found to persist in the atmospheric surface layer of semiarid landscapes, confirming that they are the main sources of transport of fine mineral aerosol particles, which are most dangerous to human health and actively engaged in biospheric and climate change processes.


semiarid zone aerosol particles submicron and micron fractions mass concentration number concentration size distribution function meteorological conditions 



We are grateful to A.Yu. Artamonov, V.K. Bandin, I.A. Buchnev, B.V. Zudin, S.A. Kosyan, V.A. Lebedev, L.O. Maksimenkov, I.A. Nevskii, F.A. Pogarskii, and I.A. Repina for assistance in the support and execution of field measurements. We are especially thankful to B.A. Khartskhaev (village of Komsomol’skii) for invaluable help in arranging activities in the Republic of Kalmykia. We acknowledge A.I. Kozachenko, Yu.P. Kaminov, and V.A. Bananova for their constant attention and valuable suggestions.

We are grateful to G.S. Golytsin for his permanent support and comments, which largely contributed to determining the goals and objectives of experiments, as well as to Professor V.M. Minashkin for his interest in this study and useful comments.

This study was supported by the Russian Foundation for Basic Research and RGO, project no. 17-05-41121, as well as the Presidium of the Russian Academy of Sciences, fundamental research program nos. 7 and 15.


  1. 1.
    Andronova, A.V., Minashkin, V.M., Iordanskii, M.A., Nevskii, I.A., Yablokov, M.Yu., Obvintsev, Yu.I., Zudin, B.V., Ivanov, Yu.N., Lebedev, V.A., and Chizhikova, N.P., Salt transport from newly dried areas: Experimental studies, in Mezhdunarodnaya konferentsiya “Estestvennye i antropogennye aerozoli”, g. Sankt-Peterburg, 29 sentyabrya–4 oktyabrya 1998 g.: Sbornik trudov (Proceedings of the International Conference “Natural and Anthropogenic Aerosols”, St. Petersburg, September 29–October 4, 1998), Ivlev, L.S., Ed., St. Petersburg: NII khimii, 1998, pp. 414–446.Google Scholar
  2. 2.
    Andronova, A.V., Granberg, I.G., Gubanova, D.P., Zudin, B.V., Iordanskii, M.A., Minashkin, V.M., Nevskii, I.A., Obvintsev, Yu.I., Osipov, V.P., and Cherlina, I.E., Ozone accommodation on aerosol particles: Estimation of the accommodation coefficient from the TROICA-5 experimental data, Izv., Atmos. Ocean. Phys., 2002, vol. 38, no. Suppl. 1, pp. S132–S137.Google Scholar
  3. 3.
    Artamonova, M.S., Gubanova, D.P., Iordanskii, M.A., Lebedev, V.A., Maksimenkov, L.O., Minashkin, V.M., Obvintsev, Yu.I., and Chkhetiani, O.G., Variations in the mass concentration and composition of surface aerosol in the steppe zone of Russian south in summer, Geofiz. Protsessy Biosfera, 2016, vol. 15, no. 1, pp. 5–24.Google Scholar
  4. 4.
    Azydova, R.N. and Semenov, O.E., Estimate for the amount of wind transport of sand in the Aral Sea region from observations of meteorological stations, Tr. Kaz. Nauchno-Issled. Gidrometeorol. Inst., 1985, no. 85, pp. 13–19.Google Scholar
  5. 5.
    Borlikov, G.M., Kharin, N.G., Bananova, V.A., and Tateishi, R., Opustynivanie zasushlivykh zemel' Prikaspiiskogo regiona (Desertification of Arid Lands in the Caspian Region), Rostov-on-Don: SKNTs VSh, 2000.Google Scholar
  6. 6.
    Chen, S., Huang, J., Kang, L., Liu, Y., Yuan, T., Wang, T., Ma, X., Zhang, G., Qian, Y., Zhao, C., Yang, B., and Wang, Y., An overview of mineral dust modeling over East Asia, J. Meteorol. Res., 2017a, vol. 31, no. 4, pp. 633–653.CrossRefGoogle Scholar
  7. 7.
    Chen, S., Huang, J., Kang, L., Wang, H., Ma, X., He, Y., Yuan, T., Yang, B., Huang, Z., and Zhang, G., Emission, transport, and radiative effects of mineral dust from the Taklimakan and Gobi deserts: Comparison of measurements and model results, Atmos. Chem. Phys., 2017b, vol. 31, no. 3, pp. 2401–2421. doi 10.5194/acp-17-2401-2017CrossRefGoogle Scholar
  8. 8.
    Chkhetiani, O.G., Gledzer, E.B., Artamonova, M.S., and Iordanskii, M.A., Dust resuspension under weak wind conditions: Direct observations and model, Atmos. Chem. Phys., 2012, vol. 12, no. 11, pp. 5147–5162.CrossRefGoogle Scholar
  9. 9.
    Di Biagio, C., Formenti, P., Balkanski, Y., Caponi, L., Cazaunau, M., Pangui, E., Journet, E., Nowak, S., Caquineau, S., Andreae, M.O., Kandler, K., Saeed, T., Piketh, S., Seibert, D., Williams, E., and Doussin, J.-F., Global scale variability of the mineral dust long-wave refractive index: A new dataset of in situ measurements for climate modeling and remote sensing, Atmos. Chem. Phys., 2017, vol. 17, no. 3, 1901–1929. doi 10.5194/ acp-17-1901-2017CrossRefGoogle Scholar
  10. 10.
    Elguindi, N., Solmon, F., and Turuncoglu, U., Quantifying some of the impacts of dust and other aerosol on the Caspian Sea region using a regional climate model, Clim. Dyn., 2016, vol. 46, nos. 1–2, pp. 41–55.CrossRefGoogle Scholar
  11. 11.
    Evan, A.T., Dunion, J., Foley, J.A., Heidinger, A.K., and Velden, C.S., New evidence for a relationship between Atlantic tropical cyclone activity and African dust outbreaks, Geophys. Res. Lett., 2006, vol. 33, L19813. doi 10.1029/2006GL026408CrossRefGoogle Scholar
  12. 12.
    Evan, A.T., Vimont, D.J., Heidinger, A.K., Kossin, J.P., and Bennartz, R., The role of aerosols in the evolution of tropical North Atlantic Ocean temperature anomalies, Science, 2009, vol. 324, no. 5928, pp. 778–781. doi doi 10.1126/science.1167404CrossRefGoogle Scholar
  13. 13.
    Ginzburg, A.S., Gubanova, D.P., and Minashkin, V.M., Influence of natural and anthropogenic aerosols on global and regional climate, Russ. J. Gen. Chem., 2008, vol. 79, no. 9, pp. 2062–2070.CrossRefGoogle Scholar
  14. 14.
    Glazkova, A.A., Kuznetsova, I.N., Shalygina, I.Yu., and Semutnikova, E.G., The diurnal variation of aerosol concentration (PM10) in summer in the Moscow region, Opt. Atmos. Okeana, 2012, vol. 25, no. 6, pp. 495–500.Google Scholar
  15. 15.
    Glazovskaya, M.A., Geokhimicheskie osobennosti tipologii i metodiki issledovaniya prirodnykh landshaftov (Geochemical Features of the Typology and Methodology of Natural Landscapes Research), Smolensk: Oikumena, 2002.Google Scholar
  16. 16.
    Gledzer, E.B., Granberg, I.G., and Chkhetiani, O.G., Convective aerosol fluxes near the ground surface, Dokl. Earth Sci., 2009, vol. 426, no. 1, pp. 652–657.CrossRefGoogle Scholar
  17. 17.
    Gledzer, E.B., Granberg, I.G., and Chkhetiani, O.G., Air dynamics near the soil surface and convective emission of aerosol, Izv., Atmos. Ocean. Phys., 2010, vol. 46, no. 1, pp. 29–40.CrossRefGoogle Scholar
  18. 18.
    Golitsyn, G.S., Granberg, I.G., Aloyan, A.E., Andronova, A.V., Gorchakov, G.I., Ponomarev, V.M., and Shishkov, P.O., Study of emissions and transport of dust aerosol in Kalmykia black lands, J. Aerosol Sci., 1997, vol. 28, Suppl. 1, pp. S725–726.CrossRefGoogle Scholar
  19. 19.
    Golitsyn, G.S., Granberg, I.G, Aloyan, A.E., Andro-nova, A.V., Arutyunyan, V.O., Vinogradov, B.V., Gabunshchina, E.B., Gorchakov, G.I., Dobryshman, E.M., and Ponomarev, V.M., Study of thermoconvective transfer of arid aerosol in black lands of Kalmykia, in Mezhdunarodnaya konferentsiya “Estestvennye i antropogennye aerozoli”, g. Sankt-Peterburg, 29 sentyabrya–4 oktyabrya 1998 g.: Sbornik trudiv (Proceedings of the International Conference “Natural and Anthropogenic Aerosols”, St. Petersburg, September 29–October 4, 1998), Ivlev, L.S., Ed., St. Petersburg: NII khimii, 1998, pp. 342–348.Google Scholar
  20. 20.
    Golitsyn, G.S., Andronova, A.V., Vinogradov, B.V., Granberg, I.G., Kuderina, T.M., and Ponomarev, V.M., Transfer of soil particles in arid regions (Kalmykiya and Priaral’e), in Mezhdunarodnaya konferentsiya “Fizika atmosfernogo aerozolya”: K 85-letiyu so dnya rozhdeniya G. V. Rozenberga, g. Moskva, 12–17 aprelya 1999 g.: Sbornik trudov (Proceedings of the International Conference “Atmospheric Aerosol Physics” Commemorating the 85th Birthday of G.V. Rozenberg, Moscow, April 12–17, 1999), Moscow: Dialog-MGU, 1999, pp. 127–138.Google Scholar
  21. 21.
    Golitsyn, G.S., Granberg, I.G., Andronova, A.V., Ponomarev, V.M., Zilitinkevich, S.S., Smirnov, V.V., and Yablokov, M.Y., Investigation of boundary layer fine structure in arid regions, Water Air Soil Pollut. Focus, 2003, vol. 3, pp. 245–257.CrossRefGoogle Scholar
  22. 22.
    Gorchakov, G.I. and Ivlev, L.S., Experimental observations of sand dune dusting in Kalmykia in the summer of 1997, in Mezhdunarodnaya konferentsiya “Estestvennye i antropogennye aerozoli”, g. Sankt-Peterburg, 29 sentyabrya–4 oktyabrya 1998 g.: Sbornik trudov (Proceedings of the International Conference “Natural and Anthropogenic Aerosols”, St. Petersburg, September 29–October 4, 1998), Ivlev, L.S., Ed., St. Petersburg: NII khimii, 1998, pp. 401–407.Google Scholar
  23. 23.
    Gorchakov, G.I. and Shukurov, K.A., Fluctuations of the sub-micron aerosol concentration under convection conditions, Izv., Atmos. Ocean. Phys., 2003, vol. 39, no. 1, pp. 75–86.Google Scholar
  24. 24.
    Gorchakov, G.I., Shishkov, P.O., Kopeikin, V.M., Emilenko, A.S., Isakov, A.A., Zakharova, P.V., Sidorov, V.N., and Shukurov, K.A., Lidar nephelometric sounding of arid aerosol, Opt. Atmos. Okeana, 1998a, vol. 11, no. 10, pp. 958–962.Google Scholar
  25. 25.
    Gorchakov, G.I., Shishkov, P.O., Kopeikin, V.M., Emilenko, A.S., Sidorov, V.N., Zakharova, P.V., and Shukurov, K.A., Aerosol in the convective boundary layer of the atmosphere, in Mezhdunarodnaya konferentsiya “Estestvennye i antropogennye aerozoli”, g. Sankt-Peterburg, 29 sentyabrya–4 oktyabrya 1998 g.: Sbornik trudov (Proceedings of the International Conference “Natural and Anthropogenic Aerosols”, St. Petersburg, September 29–October 4, 1998), Ivlev, L.S., Ed., St. Petersburg: NII khimii, 1998b, pp. 408–413.Google Scholar
  26. 26.
    Gorchakov, G.I., Koprov, B.M., and Shukurov, K.A., Arid Submicron Aerosol Transport by Vortices, Izv., Atmos. Ocean. Phys., 2003, vol. 39, no. 5, pp. 536–547.Google Scholar
  27. 27.
    Gorchakova, I.A., Mokhov, I.I., and Rublev, A.N., Radiation and temperature effects of the intensive injection of dust aerosol into the atmosphere, Izv., Atmos. Ocean. Phys., 2015, vol. 51, no. 2, pp. 113–126.CrossRefGoogle Scholar
  28. 28.
    Gubanova, D.P., Belikov, I.B., Elansky, N.F., Skorokhod, A.I., and Chubarova, N.E., Variations in PM2.5 surface concentration in Moscow according to observations at MSU meteorological observatory, Atmos. Oceanic Opt., 2018, vol. 31, no. 3, pp. 290–299.CrossRefGoogle Scholar
  29. 29.
    Huang, J., Wang, T., Wang, W., Li, Z., and Yan, H., Climate effects of dust aerosols over East Asian arid and semiarid regions, J. Geophys. Res.: Atmos., 2014, vol. 119, no. 19, pp. 11456–11476.Google Scholar
  30. 30.
    Indoitu, R., Orlovsky, L., and Orlvsky, N., Dust storms in Central Asia: Spatial and temporal variations, J. Arid Environ., 2012, vol. 85, pp. 62–70. doi 10.1016/ j.jaridenv.2012.03.018CrossRefGoogle Scholar
  31. 31.
    Indoitu, R., Kozhoridze, G., Batyrbaeva, M., Vitkovskaya, I., Orlovsky, N., Blumberg, D., and Orlovsky, L., Dust emission and environmental changes in the dried bottom of the Aral Sea, Aeolian Res., 2015, vol. 17, pp. 101–115. doi 10.1016/j.aeolia.2015.02.004CrossRefGoogle Scholar
  32. 32.
    Ivlev, L.S., Khimicheskii sostav i struktura atmosfernykh aerozolei (Chemical Composition and Structure of Atmospheric Aerosols), Leningrad: LGU, 1982.Google Scholar
  33. 33.
    Izhko, Yu.A. and Kolesnik, Yu.A., Sovremennoe sostoyanie biosfery i ekologicheskaya politika (The Current State of the Biosphere and Environmental Policy), St. Petersburg, Piter, 2007.Google Scholar
  34. 34.
    Klose, M., Shao, Y., Li, X., Zhang, H., Ishizuka, M., Mikami, M., and Leys, J.F., Further development of a parameterization for convective turbulent dust emission and evaluation based on field observations, J. Geophys. Res.: Atmos., 2014, vol. 119, no. 17, pp. 10441–10457. doi 10.1002/2014JD021688Google Scholar
  35. 35.
    Kondrat’ev, K.Ya., Ivlev, L.S., and Krapivin, V.F., Atmosfernye aerozoli: Svoistva, protsessy obrazovaniya i vozdeistviya. Ot nano- do global’nykh masshtabov (Atmospheric Aerosol: Properties, Formation, and Impacts. Nano- to-Global Scale Processes), St. Petersburg: VVM, 2007.Google Scholar
  36. 36.
    Kuderina, T.M., Geochemical landscapes of Kalmykia, Geol., Geogr. Glob. Energ., 2006, no. 1, pp. 204–218.Google Scholar
  37. 37.
    Kuderina, T.M., Atmospheric aerosol as an indicator of desertification in arid and subarid landscapes of the European territory of Russia, in Stepi Severnoi Evrazii: Materialy VII Mezhdunar. simpoziuma (The Steppes of North Eurasia: Proceedings of the VII International Symposium), Chibilev, A.A., Ed., Orenburg: IS UrO RAN, Dimur, 2015, pp. 442–443.Google Scholar
  38. 38.
    Lambert, F., Kug, J.S., Park, R.J., Mahowald, N., Winckler, G., Abe-Ouchi, A., O’ishi, R., Takemura, T., and Lee, J.H., The role of mineral-dust aerosols in polar temperature amplification, Nature Clim. Change, 2013, vol. 3, no. 5, pp. 487–491.CrossRefGoogle Scholar
  39. 39.
    Lohmann, U. and Feichter, J., Global indirect aerosol effects: A review, Atmos. Chem. Phys., 2005, vol. 5, no. 3, pp. 715–737.CrossRefGoogle Scholar
  40. 40.
    Loria-Salazar, S.M., Holmes, H.A., Patrick, A.W., Barnard, J.C., and Moosmüller, H., Evaluation of MODIS columnar aerosol retrievals using AERONET in semi-arid Nevada and California, U.S.A., during the summer of 2012, Atmos. Environ., 2016, vol. 144, pp. 345–360. doi 10.1016/j.atmosenv.2016.08.070CrossRefGoogle Scholar
  41. 41.
    Miller, R.L., Knippertz, P., García-Pando, C.P., Perlwitz, J.P., and Tegen, I., Impact of dust radiative forcing upon climate, in Mineral Dust, Springer, 2014, pp. 327–357.Google Scholar
  42. 42.
    Opp, C., Groll, M., Aslanov, I., Lotz, T., and Vereshagina, N., Aeolian dust deposition in the southern Aral Sea region (Uzbekistan): Ground-based monitoring results from the LUCA project, Quat. Int., 2016, pp. 86–99. doi 10.1016/j.quaint.2015.12.103Google Scholar
  43. 43.
    Opustynivanie zasushlivykh zemel' Rossii: Novye aspekty, analiz, rezul’taty, problemy (Desertification of Arid Lands in Russia: New Aspects, Analysis, Results, and Problems), Drozdov, A.V., Zolotokrylin, A.N., and Mandych, A.F., Eds., Moscow: KMK, 2009.Google Scholar
  44. 44.
    Petrov, K.M., Bananova, V.A., Lazareva, V.G., and Unagaev, A.S., Regional features of global desertification in the northwestern Caspian, Biosfera, 2016, vol. 8, no. 1, pp. 49–62.CrossRefGoogle Scholar
  45. 45.
    Rama Gopal, K., Arafath, S.M., Lingaswamy, A.P., Balakrishnaiah, G., Pavan Kumari, S., Uma Devi, K., Siva Kumar Reddy, N., Raja Obul Reddy, K., Penchal Reddy, M., Reddy, R.R., and Suresh Babu, S., In-situ measurements of atmospheric aerosols by using integrating nephelometer over a semi-arid station, Southern India, Atmos. Environ., 2014, vol. 86, pp. 228–240. doi 10.1016/j.atmosenv.2013.12.009CrossRefGoogle Scholar
  46. 46.
    Seinfeld, J.H. and Pandis, S.N., Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, New York: Wiley, 2006.Google Scholar
  47. 47.
    Semenov, O.E., Vvedenie v eksperimental’nuyu meteorologiyu i klimatologiyu peschanykh bur' (Introduction to Experimental Meteorology and Climatology of Sand Storms), Almaty, 2011.Google Scholar
  48. 48.
    Semenov, O.E. and Shapov, A.P., Estimate for the amount of sand transport during dust storms in the Aral Sea region, Tr. Kaz. Nauchno-Issled. Gidrometeorol. Inst., 1984, no. 82.Google Scholar
  49. 49.
    Sen, A., Saxena, M., Sharma, A., Sharma, S.K., Mandal, T.K., Abdelmaksoud, A.S., Alghamdi, M., Khoder, M., Nazeer Ahammed, Y., Banerjee, T., Kumar, M., Bhat, M.A., Rafiq, M., Romshoo, S.A., Rashid, I., Chatterjee, A., Ghosh, S., Choudhuri, A.K., Das, T., Mahapatra, P.S., Dhir, A., Dhyani, P.P., Kumar, K., Gadi, R., Khan, A.H., Maharaj Kumari, K., Lakhani, A., Verma, N., Kuniyal, J.C., Naja, M., Pal, D., Pal, S., Saikia, P., Shenoy, D.M., Sridhar, V., and Vyas, B.M., Variations in particulate matter over Indo-Gangetic Plains and Indo-Himalayan Range during four field campaigns in winter monsoon and summer monsoon: Role of pollution pathways, Atmos. Environ., 2017, vol. 154, pp. 200–224. doi 10.1016/j.atmosenv.2016.12.054CrossRefGoogle Scholar
  50. 50.
    Shahraiyni, T.H., Karimi, K., Habibi Nokhandan, M., and Moghadas, N.H., Monitoring of dust storm and estimation of aerosol concentration in the Middle East using remotely sensed images, Arab. J. Geosci., 2015, vol. 8, no. 4, pp. 2095–2110. doi 10.1007/s12517-013-1252-3CrossRefGoogle Scholar
  51. 51.
    Shukurov, K.A. and Chkhetiani, O.G., Probability of transport of air parcels from the arid lands in the Southern Russia to Moscow region, Proc. SPIE: 23rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, 104663V. doi 10.1117/ 12.228793210.1117/12.2287932Google Scholar
  52. 52.
    Sovetsko-amerikanskii eksperiment po izucheniyu aridnogo aerozolya (Soviet–American Experiment on Arid Aerosol Research), Golitsyn, G.S., Ed., St. Petersburg–Obninsk, 1992.Google Scholar
  53. 53.
    Trefilova, A.V., Artamonova, M.S., Kuderina, T.M., Gubanova, D.P., Davydov, K.A., Iordanskii, M.A., Grechko, E.I., and Minashkin, V.M., Chemical composition and microphysical characteristics of aerosol in Moscow region in June 2009 and at the peak of fires in 2010, Geofiz. Protsessy Biosfera, 2012, vol. 11, no. 4, pp. 65–82.Google Scholar
  54. 54.
    Vinogradova, V.V., Influence of climate conditions on the man in arid lands of European Russia, Izv. Ross. Akad. Nauk: Ser. Geogr., 2012, no. 2, pp. 68–81.Google Scholar
  55. 55.
    Xi, X. and Sokolik, I.N., Quantifying the anthropogenic dust emission from agricultural land use and desiccation of the Aral Sea in Central Asia, J. Geophys. Res.: Atmos., 2016, vol. 121, no. 20. doi 10.1002/2016JD025556Google Scholar
  56. 56.
    Zayakhanov, A.S., Zhamsueva, G.S., Tsydypov, V.V., and Bal’zhanov, T.S., Analysis of submicron-size aerosol in the atmosphere of Gobi Desert, Vestn. VSGUTU, 2015, no. 1, pp. 10–13.Google Scholar
  57. 57.
    Zhang, H. and Li, X., Review of the field measurements and parameterization for dust emission during sand-dust events, J. Meteorol. Res., 2014, vol. 28, no. 5, pp. 903–922.CrossRefGoogle Scholar
  58. 58.
    Zhulanov, Yu.V., Zagainov, V.A., Lushnikov, A.A., Lyubovtseva, Yu.S, Nevskii, I.A., and Stulov, L.D., Fine and submicron-sized aerosol in arid areas, Izv. Akad. Nauk SSSR: Ser. Fiz. Atmos. Okeana, 1986, vol. 22, no. 5, pp. 488–495.Google Scholar
  59. 59.
    Zolotokrylin, A.N., Climate and desertification of arid lands in Russia, Izv. Ross. Akad. Nauk: Ser. Geogr., 2008, no. 2, pp. 27–35.Google Scholar
  60. 60.
    Zolotokrylin, A.N., Titkova, T.B., and Cherenkova, E.A., Humidification of arid lands in the European territory of Russia: The present and the future, Arid. Ekosist., 2014, vol. 20, no. 2, pp. 5–11.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. P. Gubanova
    • 1
    • 2
    Email author
  • O. G. Chkhetiani
    • 2
    • 3
  • T. M. Kuderina
    • 4
  • M. A. Iordanskii
    • 1
  • Y. I. Obvintsev
    • 1
    • 2
  • M. S. Artamonova
    • 2
  1. 1.Karpov Research Institute of Physical Chemistry, State Scientific Center of the Russian Federation, State Corporation RosatomMoscowRussia
  2. 2.Obukhov Institute of Atmospheric Physics, Russian Academy of SciencesMoscowRussia
  3. 3.Space Research Institute, Russian Academy of SciencesMoscowRussia
  4. 4.Institute of Geography, Russian Academy of SciencesMoscowRussia

Personalised recommendations