Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 7, pp 738–744 | Cite as

Acoustic and Electric Precursors of Strong Thunderstorm Events under Megalopolis Conditions

  • A. A. SpivakEmail author
  • Yu. S. RybnovEmail author
  • S. P. SolovievEmail author
  • V. A. KharlamovEmail author


Analysis of the results of instrumental observations of the electric field and micro-variations in the atmospheric pressure in the surface atmosphere during strong thunderstorms in Moscow in the period 2014−2016 is carried out. It is shown that the arrival of a thunderstorm front has been preceded by long-period (~10 min) variations in the electric field strength, internal gravity waves, and increased magnitudes of impedance acoustic correlation. After the arrival of a cold atmospheric front, as well as in the periods of thunderstorm events, high-frequency (~1 min) variations in the electric field and increased turbidity of the atmosphere are observed. Wind motions in the atmosphere are almost absent in the atmosphere, but internal gravity waves are observed at the final stage of the phenomena. The period of variations in the electric field increases up to ~15 min.


megalopolis instrumental observations thunderstorm cell meteorological parameters electric field acoustic vibrations 



This work carried out as part of State Task project no. 0146-2014-0015 and supported in part by Program of Basic Research IV.8 of the Department of the Earth Sciences (project no. 0146-2015-0011) of the Russian Academy of Sciences, which relates to processing geophysical data.


  1. 1.
    Alekseeva, N.T., Fedorov, V.P., and Baibakov, S.E., Response of neurons of different CNS sections to the electromagnetic field influence, in Elektromagnitnoe pole i zdorov’e cheloveka: Materialy 2-i Mezhdunar. konf. “Problemy elektromagnitnoi bezopasnosti cheloveka. Fundamental’nye i prikladnye issledovaniya”, g. Moskva, 20–24 sentyabrya 1999 g. (Electromagnetic Field and Human Health: Proceedings of the Second International Conference “Problems in Human Electromagnetic Safety. Fundamental and Applied Studies”, Moscow, September 20–24, 1999), Moscow, 1999, pp. 47–48.Google Scholar
  2. 2.
    Bell, G., Marino, A.A., and Chesson, A.L., Frequency-specific blocking in the human caused by electromagnetic fields, Neuroreport, 1994, vol. 5, pp. 510–512.CrossRefGoogle Scholar
  3. 3.
    Beritashvili, B.I. and Lominadze, V.P., The size of convective cloud tops, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 1969, vol. 5, no. 10, pp. 1093–1095.Google Scholar
  4. 4.
    Chalmers, J.A., Atmospheric Electricity, Oxford: Pergamon, 1967; Leningrad: Gidrometeoizdat, 1974.Google Scholar
  5. 5.
    Chereshnev, V.A., Gamburtsev, A.G., Sigachev, A.V., Verkhoturova, L.F., Gorbarenko, E.V., and Gamburtseva, N.G., Vneshnie vozdeistviya—stressy—zabolevaemost' (External Influences—Stresses—Morbidity), Moscow: Nauka, 2016.Google Scholar
  6. 6.
    Danilov, S.D. and Svertilov, A.I., Internal gravity waves generated at thunderstorms, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 1991, vol. 27, no. 3, pp. 234–241.Google Scholar
  7. 7.
    Ekologiya cheloveka v izmenyayushchemsya mire (Human Ecology in the Changing World), Yekaterinburg: UrO RAN, 2008.Google Scholar
  8. 8.
    Goodman, R., Basset, C.A., and Henderson, A.S., Pulsing electromagnetic fields induce cellular transcription, Science, 1983, vol. 220, pp. 128–130.Google Scholar
  9. 9.
    Gossard, E. and Hooke, W., Waves in the Atmosphere, Amsterdam: Elsevier, 1975; Moscow: Mir, 1978.Google Scholar
  10. 10.
    Imyanitov, I.M., The structure and conditions for the development of thunderstorm clouds, Meteorol. Gidrol., 1981, no. 3, pp. 4–17.Google Scholar
  11. 11.
    Jamieson, K.S., Apsimon, H.M., Jamieson, S.S., Bell, J.N.B., and Yost, M.G., The effects of electric fields on charged molecules and particles in individual microenvironments, Atmos. Environ., 2007, vol. 41, no. 25, pp. 5224–5235.CrossRefGoogle Scholar
  12. 12.
    Kashleva, L.V., Atmosfernoe elektrichestvo (Atmospheric Electricity), St. Petersburg, 2008.Google Scholar
  13. 13.
    Khrgian, A.Kh., Fizika atmosfery (Atmospheric Physics), Leningrad: Gidrometeoizdat, 1978, vol. 2.Google Scholar
  14. 14.
    Kolesnik, A.G., Kolesnik, S.A., and Pobachenko, S.V., Elektromagnitnaya ekologiya (Electromagnetic Ecology), Tomsk: TML-Press, 2009.Google Scholar
  15. 15.
    Lighthill, J., Waves in Fluids, Cambridge: Cambridge Univ. Press, 1977; Moscow: Mir, 1981).Google Scholar
  16. 16.
    Lyons, W.A., Nelson, Th.E., Williams, E.R., Cramer, J.A., and Turner, T.R., Enhanced positive cloud-to-ground lightning in thunderstorms ingesting smoke form fires, Science, 1998, vol. 282, pp. 77–80.CrossRefGoogle Scholar
  17. 17.
    MacGorman, D.R. and Rust, W.D., The Electrical Nature of Storms, Oxford: Oxford Univ. Press, 1998.Google Scholar
  18. 18.
    Martynyuk, V.S., Correlation of the dynamics of electric characteristics of the human organism with space weather variations, Geofiz. Protsessy Biosfera, 2005, vol. 4, no. 1, pp. 53–61.Google Scholar
  19. 19.
    Martynyuk, V.S., Tseisler, Yu.V., and Temur’yants, N.A., Interference of the mechanisms of the influence of weak ELF electromagnetic fields the human andanimal organism, Geofiz. Protsessy Biosfera, 2012, vol. 11, no. 2, pp. 16–39.Google Scholar
  20. 20.
    Netreba, S.N. and Svirkunov, P.N., Cyclone intensity forecasting using amplitude variations of infrasonic pressure fluctuations, Meteorol. Gidrol., 1995, no. 3, pp. 28–36.Google Scholar
  21. 21.
    Popova, O.P., Rybnov, Yu.S., and Kharlamov, V.A., Generation of wave disturbances in the Lake Baikal–Tunkinskaya Valley, in Mezhgeosfernye vzaimodeistviya: Materialy seminara-soveshchaniya, g. Moskva, 26–27 sentyabrya 2011 g. (Intergeospheric Interactions: Proceedings of the Seminar–Meeting, Moscow, September 26–27, 2011), Moscow: GEOS, 2011, pp. 27–42.Google Scholar
  22. 22.
    Rakov, V. and Uman, M., Lightning: Physics and Effects, Cambridge: Cambridge Univ. Press, 2003.CrossRefGoogle Scholar
  23. 23.
    Romanova, N.N. and Yakunin, I.G., Internal gravity waves in the lower atmosphere and their generation sources, Izv. Ross. Akad. Nauk: Fiz. Atmos. Okeana, 1995, vol. 31, no. 2, pp. 163–186.Google Scholar
  24. 24.
    Rybnov, Yu.S. and Kharlamov, V.A., Local monitoring of acoustic–gravity waves, in Dinamicheskie protsessy vo vzaimodeistvuyushchikh geosferakh (Dynamic Processes in Interacting Geospheres), Moscow: GEOS, 2006, pp. 227–233.Google Scholar
  25. 25.
    Sanina, I.A., Rybnov, Yu.S., Soldatenkov, A.M., and Kharlamov, V.A., Seismoakusticheskie effekty pri grozovoi aktivnosti, in Geofizika mezhgeosfernykh vzaimodeistvii (Geophysics of Intergeospheric Interactions), Moscow: GEOS, 2008, pp. 67–79.Google Scholar
  26. 26.
    Sidyakin, V.G., Vliyanie global’nykh ekologicheskikh faktorov na nervnuyu sistemu (Influence of Global Environmental Factors on the Nervous System), Kiev: Naukova dumka, 1986.Google Scholar
  27. 27.
    Solov’ev, S.P. and Rybnov, Yu.S., Electric-field disturbance and generation of acoustic–gravity waves due to an approaching atmospheric front, in Geofizika mezhgeosfernykh vzaimodeistvii (Geophysics of Intergeospheric Interactions), Moscow: GEOS, 2008, pp. 95–97.Google Scholar
  28. 28.
    Solov’ev, S.P., Rybnov, Yu.S., and Kharlamov, V.A., Acoustic–gravity waves and accompanying electromagnetic fields, in Lokal’nye i global’nye proyavleniya vozdeistvii na geosfery (Local and Global Manifestations of Impacts on the Geopshere), Moscow: GEOS, 2008, pp. 256–263.Google Scholar
  29. 29.
    Spivak, A.A., Loktev, D.N., Rybnov, Yu.S., Solov’ev, S.P., and Kharlamov, V.A., Izv., Atmos. Ocean. Phys., 2016a, vol. 52, no. 8, pp. 841–852.CrossRefGoogle Scholar
  30. 30.
    Spivak, A.A., Kishkina, S.B., Loktev, D.N., Rybnov, Yu.S., Solov’ev, S.P., and Kharlamov, V.A., Instruments and techniques for megapolis geophysical monitoring and their application in the Moscow IDG RAS Geophysical Monitoring Center, Seism. Prib., 2016b, vol. 52, no. 2, pp. 65–78.Google Scholar
  31. 31.
    Tikhonov, M.N., Kudrin, I.D., Dovgusha, V.V., and Dovgusha, L.V., The electromagnetic medium and the man, Vopr. Okhr. Okruzh. Sredy, 1997, no. 11, pp. 55–84.Google Scholar
  32. 32.
    Tuzhilkin, D.A., Apryatkina, M.L., and Borodin, A.S., Influence of variations in environmental physical fields on the activity of the human cardiovascular system, in Fizika okruzhayushchei sredy (Environmental Physics), Tomsk: TGU, 2011, pp. 285–288.Google Scholar
  33. 33.
    Volland, H., Atmospheric Electrodynamics, Berlin: Springer, 1984.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Geosphere Dynamics, Russian Academy of SciencesMoscowRussia

Personalised recommendations