Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 7, pp 646–653 | Cite as

Aquifer Dynamics and Atmospheric Electricity

  • V. N. ShuleikinEmail author


Measurements of variations in the atmospheric electric field (AEF), soil and atmospheric radon concentration, and hydrogeological parameters have made it possible to establish links between the listed processes. A rise in aquifer levels increases the outflow of soil radon, which decreases the AEF; a decrease in levels leads to the opposite effect. The rise can be caused by the infiltration of precipitation, hydraulic fracturing, and lowering of atmospheric pressure; the fall can be caused by the pumping of artesian waters or by an increase in atmospheric pressure.


atmospheric pressure atmospheric electric field radon levels of aquifers 



  1. 1.
    Bagmet, A.L., Bagmet, M.I., Barabanov, V.L., Grinevskii, A.O., Kissin, I.G., Malugin, V.A., Rukavishnikova, T.A., and Savin, I.V., Study of tidal oscillations in the underground water level in the Obninsk Well, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1989, no. 11, pp. 84–95.Google Scholar
  2. 2.
    Barabanov, V.L., Grinevskii, A.O., Kalachev, A.A., and Savin, I.V., The frequency characteristic of the well–aquifer system according to observation data on underground water level, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1988, no. 3, pp. 41–50.Google Scholar
  3. 3.
    Baranov, V.I., Radiometriya (Radiometry), Moscow: AN SSSR, 1956.Google Scholar
  4. 4.
    Firstov, P.P., Cherneva, N.V., Ponomarev, E.A., and Buzevich, A.V., Subsoil radon and electric field stress of the atmosphere at the Petropavlovsk-Kamchatskii geodynamic test field, Vestn. Kamchatskoi Reg. Assots. Uchebno-Nauchnyi Tsentr, Nauki Zemle, 2006, no. 1, pp. 102–109.Google Scholar
  5. 5.
    Frenkel’, Ya.I., Teoriya yavlenii atmosfernogo elektrichestva (The Theory of Atmospheric Electricity Phenomena), Moscow: Librokom, 2009.Google Scholar
  6. 6.
    Gergedava, Sh.K., Buzinov, S.N., Shuleikin, V.N., Rudakov, V.P., and Voitov, G.I., Nontraditional geophysics for underground gas storage facilities, Neft’ Gaz Biznes, 2001, no. 5, pp. 2–7.Google Scholar
  7. 7.
    Koshkin, N.I. and Shirkevich, M.G., Spravochnik po elementarnoi fizike (Handbook of Elementary Physics), Moscow: Nauka, 1976.Google Scholar
  8. 8.
    Kuptsov, A.V., Marapulets, Yu.V., Mishchenko, M.A., Rulenko, O.P., Shevtsov, B.M., and Shcherbina, A.O., On the relation between high frequency acoustic emissions in near-surface rocks and the electric field in the near-ground atmosphere, J. Volkanol. Seismol., 2007, vol. 1, no. 5, pp. 349–353.CrossRefGoogle Scholar
  9. 9.
    Redin, A.A., Mathematical modeling of electrodynamic processes in the surface layer under conditions of atmospheric aerosol pollution, Extended Abstract of Cand. Sci. (Phys.–Math.) Dissertation, Taganrog, 2011.Google Scholar
  10. 10.
    Shuleikin, V.N., Radon transport to the near-surface soil and air layers, Izv., Atmos. Ocean. Phys., 2013a, vol. 49, no. 8, pp. 853–860.CrossRefGoogle Scholar
  11. 11.
    Shuleikin, V.N., The reverse electrode effect: Calculation and experiment, Nauka Tekhnol. Razrab., 2013b, no. 2, pp. 17–27.Google Scholar
  12. 12.
    Shuleikin, V.N. and Shchukin, G.G., Studying the variations of atmospheric electric field in the areas of oil and gas fields, Russ. Meteorol. Hydrol., 2015, vol. 40, no. 2, pp. 85–91.CrossRefGoogle Scholar
  13. 13.
    Shuleikin, V.N., Shchukin, G.G., and Kupovykh, G.V., Razvitie metodov i sredstv prikladnoi geofiziki: Atmosferno–elektricheskii monitoring geologicheskikh neodnorodnostei i zon geodinamicheskikh protsessov (Development of Methods and Tools in Applied Geophysics: Atmospheric–Electric Monitoring of Geological Inhomogeneities and Zones of Geodynamic Processes), St. Petersburg: TsOP RGGMU, 2015.Google Scholar
  14. 14.
    Sisigina, T.I., Measurements of radon exhalation from the surface of rock formations, in Voprosy yadernoi meteorologii (Issues in Nuclear Meteorology), Moscow: Gosatomizdat, 1962, pp. 104–111.Google Scholar
  15. 15.
    Sisigina, T.I., Radon exhalation from the surface of several soil types in the European part of the USSR and Kazakhstan, in Radioaktivnye izotopy v atmosfere i ikh ispol’zovanie v meteorologii (Radioactive Isotopes in the Atmosphere and Their Use in Meteorology), Moscow: Atomizdat, 1965, pp. 40–48.Google Scholar
  16. 16.
    Tverskoi, P.N., Kurs meteorologii (A Course of Meteorology), Leningrad: Gidrometizdat, 1951.Google Scholar
  17. 17.
    Voitov, G.I., Rudakov, V.P., Shuleikin, V.N., Kozlova, N.S., and Baranova, L.V., Emanation and electrical effects in the subsoils atmosphere above the Kaluga impact ring structure, Ross. Zh. Nauk Zemle, 1999, vol. 1, no. 6, pp. 503–510.Google Scholar
  18. 18.
    Zubarev, A.P. and Shuleikin, V.N., Kompleksnyi geofizicheskii i geokhimicheskii kontrol' pri ekspluatatsii podzemnykh gazokhranilishch (Complex Geophysical and Geochemical Control in the Operation of Underground Gas-Storage Facilities), Moscow: Gazprom PKhG, 2009.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Oil and Gas Research Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations