Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 7, pp 730–737 | Cite as

Historical Database of Geomagnetic and Auroral Activity for the Study of Solar–Terrestrial Relationships

  • N. G. PtitsynaEmail author
  • S. N. SokolovEmail author
  • V. A. SoldatovEmail author
  • M. I. TyastoEmail author
Article
  • 8 Downloads

Abstract

In situ data on geomagnetic and auroral activity obtained in recent years has contributed to a greater understanding of solar–terrestrial processes. However, because space exploration began only in the middle of the 20th century, in situ data are insufficient to analyze geomagnetic variations and solar-activity variations on a time scale from decades to centuries. The Russian network of magnetic and meteorological observatories provides one of the longest data series. For example, the magnetograms from St. Petersburg (SPE), Pavlovsk (SLU), and Voeikovo (LNN) stations provide long series of continuous records of variations of declination (D) and horizontal (H) and vertical (Z) components of the geomagnetic field. The aim of this paper is to make this data publicly available. For this purpose, a specialized database has been developed for the study of various aspects of solar–terrestrial relationships, including heliobiomagnetology. The database contains (1) digital images of analog magnetograms from SPE (1869–1877) and SLU (1878–1921, images for 1921–1941 are still being scanned), (2) hourly values of declination D and horizontal H and vertical Z components of the geomagnetic field obtained at SPE and SLU stations for 1869–1914, (3) data on geomagnetic storms from the SLU station for 1878–1941 and from the LNN station for 1947–1954, and (4) data on aurora borealis observed at 141 stations of the Russian Meteorological Network for 1837–1909. The database is designed to provide online access to the Russian collection of historical data on geomagnetic and auroral activity. On this basis, it is possible to carry out research on various aspects of space weather and climate and use it, among other things, to solve problems of heliomagnetobiology. Users are provided with easy access to individual magnetograms at different zoom levels. Online access will allow a wide range of researchers to use these databases to solve problems related to historical space weather data.

Keywords:

database digital images magnetograms magnetic storms aurora borealis historical data on geomagnetic and auroral activity 

Notes

REFERENCES

  1. 1.
    Afanas’eva, V.I. and Bychkova, A.K., Svodnyi katalog magnitnykh bur' za 1949–1958 gody (Master Catalog of Magnetic Storms in 1949–1958), Moscow: IZMIRAN, 1979, pp. 7–93.Google Scholar
  2. 2.
    Annuaire magnétique et météorologique du corps des ingénieurs des mines de Russie. Annee 1841–1846, Kupffer, A.T., Ed., St.-Petersburg: l’Imprimerie de A. Jacobson, 1843–1849.Google Scholar
  3. 3.
    Ben’kova, N.P. and Kalinin, Yu.D., Catalog of magnetic storms of the Slutsk magnetic observatory, in Kosmicheskie dannye: Dekadnyi obzor (Space Data: Decadal Overview), Leningrad–Moscow: Gidrometeoizdat, 1941, vol. 125, p. 8; vol. 126, p. 5; vol. 127, p. 5.Google Scholar
  4. 4.
    Breus, T.K. and Rapoport, S.I., Magnitnye buri: Mediko-biologicheskie i geofizicheskie aspekty (Magnetic Storms: Medico–Biological and Geophysical Aspects), Moscow, 2004.Google Scholar
  5. 5.
    Breus, T.K., Komarov, F.I., and Rapoport, S.I., Medical effects of magnetic storms, Klin. Med., 2005a, no. 3, pp. 4–12.Google Scholar
  6. 6.
    Breus, T.K., Kleimenova, N.G., Kozyreva, O.V., and Rapoport, S.I., Possible biotropic influence of geomagnetic pulsations Pc1 (0.2–5.0) on the cardiovascular system, in Materialy 3-i Mezhdunar. konf. “Bolezni tsivilizatsii v aspekte ucheniya V.I. Vernadskogo” (Proceedings of the 3rd International Conference “Civilization Diseases in Terms of V.I.Vernadsky’s Theory”), Moscow: RUDN, 2005, p. 50.Google Scholar
  7. 7.
    Cherry, R., Schumann resonances—a plausible biophysical mechanism for the human health effects of solar/geomagnetic activity, Nat. Hazards, 2002, vol. 26, pp. 279–331.CrossRefGoogle Scholar
  8. 8.
    Chibrikin, V.M., Samovichev, E.G., and Kashinskaia, I.V., Dynamics of social processes and geomagnetic activity. 1. Periodic components of variations in the number of recorded crimes in Moscow, Biofizika, 1995, vol. 40, pp. 1050–1053.Google Scholar
  9. 9.
    Chizhevskii, A.L., Zemnoe ekho solnechnykh bur' (The Terrestrial Echo of Solar Storms), Korzhuev, P.A, Ed., Moscow: Mysl’, 1976.Google Scholar
  10. 10.
    Curto, J.J., Araki, T., and Alberca, L.F., Evolution of the concept of sudden storm commencements and their operative identification, Earth Planets Space, 2007, vol. 59, pp. 1–12.CrossRefGoogle Scholar
  11. 11.
    Feigin, V.L., Parmar, P.G., Barker-Collo, S., Bennett, D.A., Anderson, C.S., Thrift, A.G., Stegmayr, B., Rothwell, P.M., Giroud, M., Bejot, Ya., Carvil, P., Krishnamurthi, R., and Kasabov, N., Geomagnetic storms can trigger stroke: Evidence from 6 large population-based studies in Europe and Australasia, Stroke, 2014, vol. 45, no. 6, pp. 1639–1651.CrossRefGoogle Scholar
  12. 12.
    Friedman, H., Becket, R.O., and Bachman, C.H., Geomagnetic parameters and psychiatric hospital admissions, Nature, 1953, vol. 200, pp. 626–628.CrossRefGoogle Scholar
  13. 13.
    Goldberg, R.B. and Creasey, W.A., A review of cancer induction by extremely low frequency electromagnetic fields: Is there a plausible mechanism?, Med. Hypotheses, 1991, vol. 35, no. 3, pp. 265–274.CrossRefGoogle Scholar
  14. 14.
    Handbook of Biological Effects of Electromagnetic Fields, Barnes, F.S. and Geenebaum, B., Eds., CRC Press, 2006.Google Scholar
  15. 15.
    Kleimenova, N.G., Pulsations in the geomagnetic field as an important biotropic factor of space weather, in Vliyanie kosmicheskoi pogody na cheloveka v kosmose i na Zemle: Tr. Mezhdunar. konf., g. Moskva, 4-8 iyunya 2012 g. (Space Weather Impact on Men in the Space and on the Earth: Proceedings of International Conference, Moscow, June 4–8, 2012), Grigor’ev, A.I. and Zelenii, L.M., Ed., Moscow: IKI RAN, 2013, vol. 1, pp. 163–183.Google Scholar
  16. 16.
    Kleimenova, N.G., Kozyreva, O.V., Breus, T.K., and Rapoport, S.I., Seasonal variations in myocardial infarctions and the possible biotropic influence of short-period geomagnetic pulsations on the human cardiovascular system, Biophysics, 2007, vol. 52, no. 6, pp. 625–631.CrossRefGoogle Scholar
  17. 17.
    Komarov, F.I., Breus, T.K., Rapoport, S.I., Musin, M.M., and Naborov, I.V., Geliogeofizicheskie faktory i ikh vozdeistvie na tsiklicheskie protsessy v biosfere (Geophysical Factors and Their Influence on Cyclic Processes in the Biosphere), Moscow, 1989.Google Scholar
  18. 18.
    Kupfer, A.Ya., Nastavlenie k proizvodstvu magnitnykh i meteorologicheskikh nablyudenii, sostavlennoe direktorom Glavnoi fizicheskoi observatorii dlya magnitnykh observatorii Gornogo vedomstva: Pribavlenie k Svodu nablyudenii za 1852 g. (Manual for Magnetic and Meteorological Observations, Compiled by the Director of the Main Physical Observatory for Magnetic Observatories of the Office of Mining: Appendix to the Corpus of Observations for 1852), St. Petersburg, Korpus gorn. inzhenerov, 1855, pp. 35–53.Google Scholar
  19. 19.
    Kupfer, A.Ya., Rukovodstvo k proizvodstvu meteorologicheskikh nablyudenii, sostavlennoe A.Ya. Kupferom, direktorom Glavnoi fizicheskoi observatorii (Manual for Meteorological Observations, Compiled by A.Ya. Kupfer, the Director of the Main Physical Observatory), St. Petersburg: Tip. A. Yakobsona, 1857.Google Scholar
  20. 20.
    Letopisi Glavnoi fizicheskoi observatorii za 1870 g. (Annals of the Main Physical Observatory for 1870), St. Petersburg: Tip. Imperat. Akad. nauk, 1872.Google Scholar
  21. 21.
    Letopisi Glavnoi fizicheskoi observatorii. Toma za 1849-1852 gg. (Annals of the Main Physical Observatory for 1849–1852), Kupfer, A., Ed., St. Petersburg, Izd. A. Yakobsona, 1852–1855.Google Scholar
  22. 22.
    Lindsay, G.M., Luhmann, J.G., Russell, C.T., and Gaziz, P.R., On the sources of interplanetary shocks at 0.72 AU, J. Geophys. Res., 1994, vol. 99, pp. 11–17.CrossRefGoogle Scholar
  23. 23.
    Lockwood, M., Nevanlinna, H., Vokhmyanin, M., Ponyavin, D., Sokolov, S., Barnard, L., Owens, M.J., Harrison, R.G., Rouillard, A.P., and Scott, C.J., Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr. Part 3: improved representation of solar cycle 11, Ann. Geophys., 2014, no. 32, pp. 367–381. doi 10.5194/angeo-32-367-2014Google Scholar
  24. 24.
    Mayaud, P., A hundred year series of geomagnetic data, 1868–1967: Indices aa, storm sudden commencements, IAGA Bull., No. 33, Paris: IUGG Publ. Office, 1973.Google Scholar
  25. 25.
    McNish, A.G., Sudden commencements at Watheroo, C. R. Assemblée de Lisbonne 1933, IATME Bull., 1934, no. 9, pp. 234–238.Google Scholar
  26. 26.
    Moos, N.A.F., Magnetic Observations Made at the Government Observatory for the Period 1846 to 1905. Part 2: The Phenomenon and Its Discussions, Bombay: Government Central Press by order of His Majesty’s Government, 1910, pp. 452–453, 457–459.Google Scholar
  27. 27.
    Newton, H.W., “Sudden commencements” in the Greenwich magnetic records (1879–1944) and related sunspot data, Mon. Not. R. Astron. Soc., 1948, vol. 5, pp. 159–185.CrossRefGoogle Scholar
  28. 28.
    Ptitsyna, N.G., Villoresi, G., Dorman, L.I., Iucci, N., and Tyasto, M.I., Natural and man-made low-frequency magnetic fields as a potential health hazard, Phys.-Usp., 1998, vol. 41, no. 7, pp. 687–709.CrossRefGoogle Scholar
  29. 29.
    Ptitsyna, N.G., Villoresi, G., Kopytenko, Yu.A., and Tyasto, M.I., Magnitnye polya na elektrotransporte i ekologiya cheloveka (Magnetic Fields in Electric Transport and Human Ecology), St. Petersburg: Nestor-Istoriya, 2010.Google Scholar
  30. 30.
    Ptitsyna, N.G., Tyasto, M.I., and Khrapov, B.A., Great geomagnetic storms in 1841–1870 according to the data from the network of Russian geomagnetic observatories, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 5, pp. 613–623.Google Scholar
  31. 31.
    Ptitsyna, N.G., Kopytenko, Y.A., Villoresi, G., Pfluger, D.H., Ismaguilov, V.S., Iucci, N., Kopytenko, E.A., Zaitzev, D.B., Voronov, P.M., and Tyasto, M.I., Waveform magnetic field survey in Russian DC- and Swiss AC-powered trains: A basis for biologically relevant exposure assessment, Bioelectromagnetics, 2003, vol. 24, pp. 546–556.CrossRefGoogle Scholar
  32. 32.
    Ptitsyna, N.G., Tyasto, M.I., and Khrapov, B.A., 22-year cycle in the frequency of aurora occurrence in XIX century: Latitudinal Effects, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 2, pp. 190–198.Google Scholar
  33. 33.
    Randall, W. and Randall, S., The solar wind and hallucinations: A possible relation due to magnetic disturbances, Bioelectromagnetics, 1991, vol. 12, no. 1, pp. 67–70.CrossRefGoogle Scholar
  34. 34.
    Rapoport, S.I., Breus, T.K., Kleimenova, N.G., Kozyreva, O.V., and Malinovskaya, N.K., Geomagnetic pulsations and myocardial infarction, Ter. Arkh., 2006, no. 4, pp. 56–60.Google Scholar
  35. 35.
    Roederer, J.G., Are magnetic storms hazardous to your health?, EOS, Trans. Am. Geophys. Union, 1995, vol. 76, pp. 441–456.CrossRefGoogle Scholar
  36. 36.
    Sadafi, H.A., Mehboodi, Zh., and Sardar, D., A review of the mechanisms of interaction between the extremely low frequency electromagnetic fields and human biology, in Symposium on Progress in Electromagnetics Research, Cambridge, USA, 2006.Google Scholar
  37. 37.
    Sokolov, S.N. and Soldatov, V.A., Geomagnetic observations at Pavlovsk observatory in 1878–1914, in Proc. of the 10th Int. Conf. “Problems of Geocosmos”, Oct. 6–10, 2014, St. Petersburg, 2014, pp. 407–409.Google Scholar
  38. 38.
    Spravochnik po peremennomu magnitnomu polyu SSSR (Handbook on Alternating Magnetic Field of the USSR), Afanas’eva, V.I., Ed., Leningrad: Gidrometeoizdat, 1954, pp. 212–266.Google Scholar
  39. 39.
    Stewart, B., An Account of the Construction of the Self-Recording Magnetographs at Present in Operation at the Kew Observatory of the British Association, Report of the British Association for the Advancement of Science for 1859, London: Taylor and Francis, 1860.Google Scholar
  40. 40.
    Sunspot and Geomagnetic-Storm Data Derived from Greenwich Observations 1874–1954, London: Her Majesty’s Stationary Office, 1955, App. 1, pp. 102–103.Google Scholar
  41. 41.
    Svod nablyudenii, proizvedennykh v Glavnoi fizicheskoi i podchinennykh ei observatoriyakh pod rukovodstvom akademika A. Kupfera. Toma za 1848, 1853–1862 gg. (Corpus of Observations Made at the Main Physical Observatory and Its Subordinate Entities Under the Supervision of Academician A. Kupfer. Volumes for 1848, 1853–1862), St. Petersburg: Izd-vo A. Yakobsona, 1855.Google Scholar
  42. 42.
    Temur’yants, N.A., Vladimirskii, B.M., and Tishkin, O.G., Sverkhnizkochastotnye elektromagnitnye signaly v biologicheskom mire (ELF Electromagnetic Signals in the Biological World), Kiev: Naukova dumka, 1992.Google Scholar
  43. 43.
    Tyasto, M.I., Ptitsyna, N.G., Veselovsky, I.S., and Yakovchuk, O.S., Extremely strong geomagnetic storm of September 2–3, 1859, according to the archived data of observations at the Russian network, Geomagn. Aeron. (Engl. Transl.), 2009, vol. 49, no. 2, pp. 153–162.Google Scholar
  44. 44.
    UK Data. http://www.bgs.ac.uk/data/Magnetograms/ home.html. Accessed Sep. 1, 2016.Google Scholar
  45. 45.
    Valberg, P.A., Designing EMF experiments: What is required to characterize “exposure?”, Bioelectromagnetics, 1995, vol. 16, pp. 396–401.CrossRefGoogle Scholar
  46. 46.
    Vil’d, G.I., Instruktsiya dlya meteorologicheskikh stantsii (Guideline for Meteorological Stations), St. Petersburg: Imperat. Akad. nauk, 1869.Google Scholar
  47. 47.
    Villoresi, G., Dorman, L.I., Ptitsyna, N.G., Iucci, N., and Tyasto, M.I., Forbush decreases as indicators of health-hazardous geomagnetic storms, in Proc. of the 24th International Cosmic Ray Conference, Rome, 1995.Google Scholar
  48. 48.
    Vincze, G., Szasz, A., and Liboff, A.R., New theoretical treatment of ion resonance phenomena, Bioelectromagnetics, 2008, vol. 29, pp. 380–386.CrossRefGoogle Scholar
  49. 49.
    Vladimirskii, B.M., Grand minima of solar activity and sociodynamics of the culture, Geofiz. Protsessy Biosfera, 2011, vol. 10, no. 4, pp. 30–44.Google Scholar
  50. 50.
    Vladimirskii, B.M., Grand minima of solar activity and sociocultural dynamics, Geofiz. Protsessy Biosfera, 2012, vol. 11, no. 4, pp. 47–58.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.St. Petersburg Branch of the Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations