Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 6, pp 594–607 | Cite as

Role of Penetrative Convection under the Ice in the Formation of the State of the World Ocean

  • N. G. IakovlevEmail author
  • E. M. Volodin
  • D. V. Sidorenko
  • A. S. Gritsun


The results of numerical experiments on the sensitivity of the INMCM48 Earth System model (Institute of Numerical Mathematics, Russian Academy of Science (INM RAS)) to the various parameterizations of convection induced by the formation of a new ice are presented and analyzed. It is shown that the response in temperature and salinity is observed not only directly under the ice, but in ocean subpolar regions as well, which is especially pronounced in the North Atlantic. An effective parameterization is proposed which significantly reduces the estimation error of the surface salinity in the AO with no formation of the trends of the near-bottom salinity fields, in contrast with the well-known parameterization (Nguyen, Menemenlis and Kwok, 2009).


INMCM Climate model of the INM RAS Arctic Ocean Southern Ocean North Atlantic convection under ice parameterization 



This work was carried out at the Institute of Numerical Mathematics, Russian Academy of Sciences, and the Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, and was supported by Russian Foundation for Basic Research, project. no. 16-55-76004 ERA_a.


  1. 1.
    G. Holloway, F. Dupont, E. Golubeva, S. Hakkinen, E. Hunke, M. Karcher, F. Kauker, M. Maltrud, M. Morales Maqueda, W. Maslowski, G. Platov, D. Stark, M. Steele, D. Worthen, and J. Zhang, “Water properties and circulation in Arctic Ocean models,” J. Geophys. Res. 112, 1029 (2007).Google Scholar
  2. 2.
    E. C. Carmack, M. Yamamoto-Kawai, T. W. N. Haine, S. Bacon, B. A. Bluhm, C. Lique, H. Melling, I.  V. Polyakov, F. Straneo, M.-L. Timmermans, and W. J. Williams, “Freshwater and its role in the Arctic marine system: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans,” J. Geophys. Res. 121 (3) (2016). doi 10.1002/2015JG003140Google Scholar
  3. 3.
    T. M. Cronin, G. S. Dwyer, J. Farmer, H. A. Bauch, R. F. Spielhagen, M. Jakobsson, J. Nilsson, Jr. W. M. Briggs, and A. Stepanova, “Deep Arctic Ocean warming during the last glacial cycle,” Nature Geosci. 5, 631–634 (2012).CrossRefGoogle Scholar
  4. 4.
    E. M. Volodin, N. A. Diansky, and A. V. Gusev, “Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations,” Izv., Atmos. Ocean. Phys. 46 (4), 414–431 (2010).CrossRefGoogle Scholar
  5. 5.
    E. M. Volodin, E. V. Mortikov, S. V. Kostrykin, V. Ya. Galin, V. N. Lykosov, A. S. Gritsun, N. A. Dianskii, A. V. Gusev, and N. G. Yakovlev, “Simulation of modern climate with the new version of the INM RAS climate model,” Izv., Atmos. Ocean. Phys. 53 (2), 142–155 (2017).CrossRefGoogle Scholar
  6. 6.
    D. Sidorenko, T. Rackow, T. Jung, T. Semmler, D. Barbi, S. Danilov, K. Dethloff, W. Dorn, K. Fieg, H. F. Goessling, D. Handorf, S. Harig, W. Hiller, S. Juricke, M. Losch, J. Schroter, D. V. Sein, and Q. Wang, “Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part I: Model formulation and mean climate,” Clim. Dyn. 44 (3-4), 757–780 (2015).CrossRefGoogle Scholar
  7. 7.
    R. A. Locarnini, A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, World Ocean Atlas 2009, Vol. 1: Temperature. Ed. by S. Levitus, NOAA Atlas NESDIS 68 (U.S. Government Printing Office, Washington, D.C., 2010).Google Scholar
  8. 8.
    J. I. Antonov, D. Seidov, T. P. Boyer, R. A. Locarnini, A. V. Mishonov, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, World Ocean Atlas 2009, Vol. 2: Salinity, Ed. by S. Levitus, NOAA Atlas NESDIS 69 (U.S. Government Printing Office, Washington, D.C., 2010).Google Scholar
  9. 9.
    A. T. Nguyen, D. Menemenlis, and R. Kwok, “Improved modeling of the Arctic halocline with a subgrid-scale brine rejection parameterization,” J. Geophys. Res. 114 (2009). doi 10.1029/2008JC005121Google Scholar
  10. 10.
    P. Duffy and K. Caldeira, “Sensitivity of simulated salinity in a three-dimensional ocean model to upper ocean transport of salt from sea-ice formation,” Geophys. Res. Lett. 24 (11), 1323–1326 (1997).CrossRefGoogle Scholar
  11. 11.
    P. Duffy, M. Eby, and A. Weaver, “Effects of sinking of salt rejected during formation of sea ice on results of an ocean–atmosphere–sea ice climate model,” Geophys. Res. Lett. 26 (12), 1739–1742 (1999).CrossRefGoogle Scholar
  12. 12.
    R. Timmermann and A. Beckmann, “Parameterization of vertical mixing in the Weddell Sea,” Ocean Modell. 6, 83–100 (2004).CrossRefGoogle Scholar
  13. 13. Scholar
  14. 14.
    V. Eyring, S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, “Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization,” Geosci. Model Dev. 9, 1937–1958 (2016). doi 10.5194/ gmd-9-1937-2016CrossRefGoogle Scholar
  15. 15.
    R. C. Pacanowski and S. G. H. Philander, “Parameterization of vertical mixing in numerical models of the tropical oceans,” J. Phys. Oceanogr. 11, 1443–1451 (1981).CrossRefGoogle Scholar
  16. 16.
    J. D. Guthrie, J. H. Morison, and I. Fer, “Revisiting internal waves and mixing in the Arctic Ocean,” J. Geophys. Res.: Oceans 118, 1–12 (2013). doi 10.1002/jgrc.20294CrossRefGoogle Scholar
  17. 17.
    D. Menemenlis, I. Fukumori, and T. Lee, “Using Green’s functions to calibrate an ocean general circulation model,” Mon. Weather Rev. 133, 1224–1240 (2005).CrossRefGoogle Scholar
  18. 18.
    K. E. Taylor, R. J. Stouffer, and G. A. Meehl, “An overview of CMIP5 and the experiment design,” Bull. Am. Meteorol. Soc. 93, 485–498 (2012). doi 10.1175/BAMS-D-11-00094.1CrossRefGoogle Scholar
  19. 19.
    G. Flato, J. Marotzke, B. Abiodun, P. Braconnot, S. C. Chou, W. Collins, P. Cox, F. Driouech, S. Emori, V. Eyring, C. Forest, P. Gleckler, E. Guilyardi, C. Jakob, V. Kattsov, C. Reason, and M. Rummukainen, “Evaluation of climate models,” in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, (Cambridge University Press, Cambridge, 2013), pp. 741–882. doi 10.1017/CBO9781107415324.020Google Scholar
  20. 20. Scholar
  21. 21.
    W. Large, J. McWilliams, and S. Doney, “Ocean vertical mixing: A review and a model with a nonlocal boundary layer parameterization,” Rev. Geophys. 32 (4), 363–403 (1994).CrossRefGoogle Scholar
  22. 22.
    S. Marcq and J. Weiss, “Influence of sea ice lead-width distribution on turbulent heat transfer between the ocean and the atmosphere,” Cryosphere 6, 143–156 (2012).CrossRefGoogle Scholar
  23. 23.
    J. Meibing, J. Hutchings, Y. Kawaguch, and T. Kikuchi, “Ocean mixing with lead-dependent subgrid scale brine rejection parameterization in a climate model,” J. Ocean Univ. China 11 (4), 473–480 (2012).CrossRefGoogle Scholar
  24. 24.
    M. Ilicak, A. J. Adcroft, and S. Legg, “A framework for parameterization of heterogeneous ocean convection,” Ocean Modell. 82, 1–14 (2014).CrossRefGoogle Scholar
  25. 25.
    J.-M. Campin, C. Hill, H. Jones, and J. Marshall, “Super-parameterization in ocean modeling: Application to deep convection,” Ocean Modell. 36, 90–101 (2011).CrossRefGoogle Scholar
  26. 26.
    J. Morison and M. McPhee, “Lead convection measured with an autonomous underwater vehicle,” J. Geophys. Res. 103 (C2), 3257–3281 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. G. Iakovlev
    • 1
    Email author
  • E. M. Volodin
    • 1
    • 2
  • D. V. Sidorenko
    • 3
  • A. S. Gritsun
    • 1
  1. 1.Institute of Numerical Mathematics, Russian Academy of ScienceMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia
  3. 3.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations