Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 6, pp 515–523 | Cite as

Investigation into Variations of Wind Directions Near the Surface

  • E. A. ShishovEmail author
  • O. A. Solyonaya
  • B. M. Koprov
  • V. M. Koprov
Article
  • 9 Downloads

Abstract

The results of a full-scale experiment carried out at the Obukhov Institute of Atmospheric Physics testing ground in Tsimlyansk in 2015 are described. The experiment included multipoint measurements of wind variations using 12 vanes arranged in a line across (and in some cases lengthwise) the wind directions. The correlation functions were used to calculate longitudinal and transversal correlation radii, which characterized, accordingly, the longitudinal and transversal dimensions of vortices in the airflow. The longitudinal radius was 1.8 times the transversal radius. The correlation radius dependence on the scale of Obukhov–Monin surface layer was obtained. The maxima of transversal correlation radius (about 20 m) were observed at daytime with great instability. At night they were a few times lower. Wind pulsation spectra depend on the thermal stratification and the mean wind velocity. The technique proposed in the paper allows studying the spatial structure of the direction field of the surface wind.

Keywords:

surface layer wind direction multipoint measurements correlation functions pulsation spectra 

Notes

ACKNOWLEDGMENTS

This study was supported by the Russian Science Foundation, project no. 14-27-00134-b, and the Russian Foundation for Basic Research, project no. 17-05-01116-a.

REFERENCES

  1. 1.
    A. S. Monin and A. M. Obukhov, “Dimensionless characteristics of turbulence in the atmospheric surface layer,” Dokl. Akad. Nauk SSSR 93 (2), 223–226 (1953).Google Scholar
  2. 2.
    M. Calaf, M. Hultmark, H. J. Oldroyd, and V. Simeonov, “Coherent structures and K-1 spectral behavior,” Phys. Fluids 25, 125107 (2013).CrossRefGoogle Scholar
  3. 3.
    R. A. Antonia, A. J. Chambers, C. A. Friehe, and C. W. Van-Atta, “Temperature ramps in the atmospheric surface layer,” J. Atmos. Science 36 (1), 99–108 (1979).CrossRefGoogle Scholar
  4. 4.
    M. A. Carper and F. Porté-Agel, “The role of coherent structures in subfilter-scale dissipation of turbulence measured in the atmospheric surface layer,” J. Turbul. 5 (1), 040 (2004).Google Scholar
  5. 5.
    S. L. Zubkovsky and M. M. Fedorov, “Experimental determination of the spatial correlation function of the wind velocity field in the atmospheric surface layer,” Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 22 (9), 909–916 (1986).Google Scholar
  6. 6.
    B. M. Koprov and D. Yu. Sokolov, “Spatial correlation functions of wind velocity components and temperature in the atmospheric surface layer,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 9 (2), 178–182 (1973).Google Scholar
  7. 7.
    B. A. Kader, A. M. Yaglom, and S. L. Zubkovsky, “Spatial correlation functions of surface-layer atmospheric turbulence in neutral stratification,” Bound.-Layer Meteorol. 47 (1), P. 233–249 (1989).CrossRefGoogle Scholar
  8. 8.
    M. Metzger, B. J. McKeon, and H. Holmes, “The near-neutral atmospheric surface layer: Turbulence and non-stationarity,” Phil. Trans. R. Soc. A 365, 859–876 (2007).CrossRefGoogle Scholar
  9. 9.
    B. M. Koprov, V. M. Koprov, T. I. Makarova, and G. S. Golitsyn, “Coherent structures in the atmospheric surface layer under stable and unstable conditions,” Bound.-Layer Meteorol. 111, 19–32 (2004).CrossRefGoogle Scholar
  10. 10.
    E. A. Shishov, B. M. Koprov, and V. M. Koprov, “Statistical parameters of the spatiotemporal variability of the wind direction in the surface layer,” Izv., Atmos. Ocean. Phys. 53 (1), 19–23 (2017).CrossRefGoogle Scholar
  11. 11.
    S. I. Krechmer, “On the issue of wind direction variability,” Tr. Geofiz. Inst. Akad. Nauk. SSSR, No. 33, 48–59 (1956).Google Scholar
  12. 12.
    N. Z. Ariel’, “Some results from observations of temperature and wind direction pulsations,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 107, 60–65 (1961).Google Scholar
  13. 13.
    L. Mahrt, “Surface wind direction variability,” J. Appl. Meteorol. Climatol. 50, P. 144–152 (2011).CrossRefGoogle Scholar
  14. 14.
    E. Doorn, B. Dhruva, K. R. Sreenivasan, and V. Cassella, “Statistics of wind direction and its increments,” Phys. Fluids 12 (6), 1529–1534 (2000).CrossRefGoogle Scholar
  15. 15.
    B. M. Koprov, V. M. Koprov, M. V. Kurgansky, and O. G. Chkhetiani, “Helicity and potential vorticity in surface turbulence,” Izv., Atmos. Ocean. Phys. 51 (6), 565–575 (2015).CrossRefGoogle Scholar
  16. 16.
    B. M. Koprov, V. M. Koprov, O. G. Chkhetiani, O. A. Solenaya, and E. A. Shishov, “Technique and results of measurements of turbulent helicity in a stratified surface layer,” Izv., Atmos. Ocean. Phys. 54 (5), 446–455 (2018).CrossRefGoogle Scholar
  17. 17.
    M. V. Kurgansky, A. Montecinus, V. Villagran, and S. M. Metzger, “Micro-meteorological conditions for dust-devil occurrence in the Atacama Desert,” Bound.-Layer Meteorol. 138, 285–298 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. A. Shishov
    • 1
    Email author
  • O. A. Solyonaya
    • 1
  • B. M. Koprov
    • 1
  • V. M. Koprov
    • 1
  1. 1.Obukhov Institute of Atmospheric Physics, Russian Academy of SciencesMoscowRussia

Personalised recommendations