Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 6, pp 608–615 | Cite as

Internal Tide in the Drake Passage

  • E. G. Morozov


Internal tidal waves in the Drake Passage have been studied on the basis of moored measurements, numerical modeling, and dispersion relation calculated from the profiles of temperature and salinity. Two main generation sources of internal tides are found: over a submarine elevation and over the Shackleton Ridge. The wavelength based on different estimates is close to 120 km. The numerical model shows that internal perturbations near submarine slopes are in the form of beams, while at a distance of approximately one wavelength the beams diffuse and the beam structure transforms to lower modes. The amplitude of waves near submarine slopes is close to 100 m and decreases to 30 m in the course of their propagation.


internal tide moorings dispersion relation numerical model bottom topography 



This work was performed within the state task of the Federal Agency of Scientific Organizations of Russia (theme no. 0149-2018-0003) and supported in part by the Russian Science Foundation (project no. 16-17-10149).


  1. 1.
    P. G. Baines, “On internal tide generation models,” Deep-Sea Res. 29, 307–338 (1982).CrossRefGoogle Scholar
  2. 2.
    C. Garrett and E. Kunze, “Internal tide generation in the deep ocean,” Annu. Rev. Fluid Mech. 39, 57–87 (2007).CrossRefGoogle Scholar
  3. 3.
    E. G. Morozov and V. I. Vlasenko, “Extreme tidal internal waves near the Mascarene Ridge,” J. Mar. Syst. 9 (3–4), 203–210 (1996).CrossRefGoogle Scholar
  4. 4.
    E. G. Morozov, “Semidiurnal internal wave global field,” Deep Sea Res. 42 (1), 135–148 (1995).CrossRefGoogle Scholar
  5. 5.
    V. V. Navrotsky, V. Yu. Liapidevskii, and E. P. Pavlova, “Features of internal waves in a shoaling thermocline,” Int. J. Geosci. 4, 871–879 (2013).CrossRefGoogle Scholar
  6. 6.
    E. G. Morozov, Oceanic Internal Tides. Observations, Analysis, and Modeling (Springer, 2018).CrossRefGoogle Scholar
  7. 7.
    R. Yu. Tarakanov, “The Scotia Sea and the Drake Passage as an orographic barrier for the Antarctic Circumpolar Current,” Oceanology (Engl. Transl.) 52 (2) 157–170 (2012).Google Scholar
  8. 8.
    R. Yu. Tarakanov, “Jets of the Antarctic Circumpolar Current in the central part of the Drake Passage based on the survey data in October–November of 2008,” Oceanology (Engl. Transl.) 54 (1), 1–7 (2014).Google Scholar
  9. 9.
    G. G. Panteleev, M. N. Koshlyakov, E. G. Morozov, R. Yu. Tarakanov, A. Yu. Goldin, A. Yu. Shcherbina, and M. Ikeda, “Numerical modeling of currents in the Drake Passage with assimilation of the experimental data of 2003,” Oceanology (Engl. Transl.) 46 (6), 772–783 (2006).Google Scholar
  10. 10.
    K. J. Heywood, J. L. Collins, C. W. Hughes, and I. Vassie, “On the detectability of internal tides in Drake Passage,” Deep-Sea Res. 54 (11), 1972–1984 (2007).CrossRefGoogle Scholar
  11. 11.
    V. V. Bulatov and Yu. V. Vladimirov, “Far fields of internal gravity waves from oscillating sources of disturbances,” Izv. Atmos. Ocean. Phys. 47 (2), 229–232 (2011).CrossRefGoogle Scholar
  12. 12.
    V. V. Bulatov and Yu. V. Vladimirov, “Far fields of internal gravity waves in a stratified liquid of varying depth,” Izv. Atmos. Ocean. Phys. 49 (3), 329–333 (2013).CrossRefGoogle Scholar
  13. 13.
    N. F. Barber, “The directional resolving power of an array of wave detectors,” in Ocean Wave Spectra (Prentice Hall, Englewood Cliffs, New Jersey, 1963), pp. 137–150.Google Scholar
  14. 14.
    V. I. Vlasenko, “Non-linear model for the generation of baroclinic tides over extensive inhomogeneities of the seabed relief,” Sov. J. Phys. Oceanogr. 3 (6), 417–424 (1992).CrossRefGoogle Scholar
  15. 15.
    V. Vlasenko, N. Stashchuk, and K. Hutter, Baroclinic Tides: Theoretical Modeling and Observational Evidence (Cambridge Univ. Press, Cambridge, 2005).CrossRefGoogle Scholar
  16. 16.
    E. G. Morozov, K. Trulsen, M. G. Velarde, and V. I. Vlasenko, “Internal tides in the strait of Gibraltar,” J. Phys. Oceanogr. 32 (11), 3193–3206 (2002).CrossRefGoogle Scholar
  17. 17.
    G. M. Torgrimson and B. M. Hickey, “Barotropic and baroclinic tides over the continental slope and shelf off Oregon,” J. Phys. Oceanogr. 9 (5), 945–961 (1979).CrossRefGoogle Scholar
  18. 18.
    P. H. LeBlond and L. A. Mysak, Waves in the Ocean (Elsevier, Amsterdam, 1978).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Shirshov Institute of Oceanology, Russian Academy of SciencesMoscowRussia

Personalised recommendations