Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 5, pp 462–471 | Cite as

On the Applicability of Similarity Theory for the Stable Atmospheric Boundary Layer over Complex Terrain

  • K. V. Barskov
  • A. V. Glazunov
  • I. A. RepinaEmail author
  • V. M. Stepanenko
  • V. N. Lykossov
  • I. Mammarella
Article
  • 46 Downloads

Abstract

Micrometeorological measurements in the atmospheric boundary layer over a hilly forest terrain have been made on a meteorological tower at several levels from the forest canopy top to a height that exceeds the height of trees almost seven times. A semiempirical length scale depending on the local topography features and the underlying surface type has been proposed and calculated. This scale has been shown to allow the universal functions of the Monin–Obukhov similarity theory to be corrected for a stable atmospheric boundary layer over complex terrain without substantial modification when compared to the universal functions over a homogeneous surface with small roughness elements. This approach can be used to refine the methods for calculating turbulent momentum fluxes from profile measurements over spatially inhomogeneous landscapes.

Keywords

atmospheric boundary layer complex terrain stable stratification Monin–Obukhov similarity theory universal functions eddy-covariance measurements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Monin and A. M. Obukhov, “Main regularities of turbulent mixing in the atmospheric surface layer,” Tr. Inst. Geofiz. Akad. Nauk SSSR 24, 163–187 (1954).Google Scholar
  2. 2.
    A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics (Gidrometeoizdat, St. Petersburg, 1992) [in Russian].Google Scholar
  3. 3.
    R. B. Stull, An Introduction to Boundary-Layer Meteorology (Kluwer, Boston, 1988).CrossRefGoogle Scholar
  4. 4.
    Z. Sorbjan, Structure of the Atmospheric Boundary Layer (Prentice-Hall, Englewood Cliffs, NJ, 1989).Google Scholar
  5. 5.
    J. R. Garratt, The Atmospheric Boundary Layer (Cambridge University Press, Cambridge, 1992).Google Scholar
  6. 6.
    J. C. Kaimal and J. J. Finnigan, Atmospheric Boundary Layer Flows: Their Structure and 860 Measurements (Oxford University Press, New York–Oxford, 1994).Google Scholar
  7. 7.
    J. C. Wyngaard, Turbulence in the Atmosphere (Cambridge University Press, New York, 2010).CrossRefGoogle Scholar
  8. 8.
    M. I. Mordukhovich and L. R. Tsvang, “Direct measurements of turbulent flows at two heights in the atmospheric surface layer,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 2 (8), 786–803 (1966).Google Scholar
  9. 9.
    Koprov B.M., Sokolov D. Yu. “Experimental study of the variability of heat flux in the atmospheric surface layer,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 11 (77), 743–747 (1975).Google Scholar
  10. 10.
    L. Mahrt, “Flux sampling errors for aircraft and towers,” J. Atmos. Oceanic Technol. 15, 416–429 (1998).CrossRefGoogle Scholar
  11. 11.
    G. N. Panin, G. Tetzlaff, and A. Raabe, “Inhomogeneity of the land surface and problem in parametrization of the surface fluxes in natural conditions,” Theor. Appl. Clim. 60, 163–178 (1998).CrossRefGoogle Scholar
  12. 12.
    Y. Malhi, D. D. Baldocchi, and P. G. Jarvis, “The carbon balance of tropical, temperate and boreal forests,” Plant Cell Environ. 22, 715–740 (1999).CrossRefGoogle Scholar
  13. 13.
    N. N. Vygodskaya, A. V. Varlagin, Yu. A. Kurbatova, A. V. Ol’chev, O. I. Panferov, F. A. Tatarinov, and N. V. Shalukhina, “Response of taiga ecosystems to extreme weather conditions and climate anomalies,” Dokl. Biol. Sci. 429 (6), 571–574 (2009).CrossRefGoogle Scholar
  14. 14.
    J. G. Canadell, H. A. Mooney, D. D. Baldocchi, J. A. Berry, J. R. Ehleringer, C. B. Field, S. T. Gower, D. Y. Hollinger, J. E. Hunt, R. B. Jackson, S. W. Running, G. R. Shaver, W. Steffen, S. E. Trumbore, R. Valentini, and B. Y. Bond, “Carbon metabolism of the terrestrial biosphere: A multitechnique approach for improved understanding,” Ecosystems 3, 115–130 (2000).CrossRefGoogle Scholar
  15. 15.
    M. O. Andreae and P. J. Crutzen, “Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry,” Science 276, 1052–1058 (1997).CrossRefGoogle Scholar
  16. 16.
    H. Mayer and D. Schindler, “Forest meteorological fundamentals of storm damages in forests in connection with the extreme storm ‘Lothar’,” Allg. Forst-Jagdztg. 173, 200–208 (2002).Google Scholar
  17. 17.
    H. Bergström, H. Alfredsson, J. Arnqvist, I. Carlen, J. Fransson, E. Dellwik, H. Ganander, M. Mohr, and A. Segalini, Wind power in forests, Tech. Rep., 2013. https://doi.org/elforsk.se//Raporter/?rid=13_09 Google Scholar
  18. 18.
    J. R. Garratt, “Flux-profile relations above tall vegetation,” Q. J. R. Meteorol. Soc. 104, 199–211 (1978).CrossRefGoogle Scholar
  19. 19.
    M. G. Villani, H. P. Schmid, J. L. Hutton, and C. S. Vogel, “Turbulence statistics measurements in a northern hardwood forest,” Boundary-Layer Meteorol. 108, 343–364 (2003).CrossRefGoogle Scholar
  20. 20.
    C. Q. Dias-Júnior, L. D. A. Sá, V. B. Pachêco, and C. M. de Souza, “Coherent structures detected in the unstable atmospheric surface layer above the Amazon forest,” J. Wind Eng. Ind. Aerodyn. 115, 1–8 (2013).CrossRefGoogle Scholar
  21. 21.
    D. Cava, U. Giostra, M. Siqueira, and G. Katul, “Organised motion and radiative perturbations in the nocturnal canopy sublayer above an even-aged pine-forest,” Boundary-Layer Meteorol. 112, 129–157 (2004).CrossRefGoogle Scholar
  22. 22.
    L. Mahrt, “The influence of nonstationarity on the turbulent flux-gradient relationship for stable stratification,” Boundary-Layer Meteorol. 125, 245–264 (2007).CrossRefGoogle Scholar
  23. 23.
    C. Q. Dias-Júnior, L. D. A. Sá, E. P. M. Filho, R. A. Santana, M. Mauder, and A. O. Manzi, “Turbulence regimes in the stable boundary layer above and within the Amazon forest,” Agric. For. Meteorol. 233, 122–132 (2017).CrossRefGoogle Scholar
  24. 24.
    S. Liu, H. Liu, M. Xu, M. Y. Leclerc, T. Zhu, C. Jin, Z. Hong, J. Li, and H. Liu, “Turbulence spectra and dissipation rates above and within a forest canopy,” Boundary-Layer Meteorol. 98, 83–102 (2001).CrossRefGoogle Scholar
  25. 25.
    B. D. Amiro, “Drag coefficients and turbulence spectra within three boreal forest canopies,” Boundary-Layer Meteorol. 52, 227–246 (1990).CrossRefGoogle Scholar
  26. 26.
    W. J. Massman and J. Weil, “An analytical one-dimensional second-order closure model of turbulence statistics and the Lagrangian time scale within and above plant canopies of arbitrary structure,” Boundary-Layer Meteorol. 91, 81–107 (1999).CrossRefGoogle Scholar
  27. 27.
    R. Leuning, “Estimation of scalar source/sink distributions in plant canopies using Lagrangian dispersion analysis: corrections for atmospheric stability and comparison with a multiplayer canopy model,” Boundary-Layer Meteorol. 96, 293–314 (2000).CrossRefGoogle Scholar
  28. 28.
    X. Lee, “Air motion within and above forest vegetation in non-ideal conditions,” Forest Ecol. Manage. 135, 3–18 (2000). doi 10.1016/S0378-1127(00)00294-2CrossRefGoogle Scholar
  29. 29.
    A. N. Ross, “Boundary-layer flow within and above a forest canopy of variable density,” Q. J. R. Meteorol. Soc. 138, 1259–1272 (2012).CrossRefGoogle Scholar
  30. 30.
    P. Hari and M. Kulmala, “Station for Measuring Ecosystem–Atmosphere Relations (SMEAR II),” Boreal Environ. Res. 10, 315–322 (2005).Google Scholar
  31. 31.
    J. A. Businger, J. C. Wyngaard, Y. Izumi, and E. F. Bradley, “Flux-profile relationships in the atmospheric surface layer,” J. Atmos. Sci. 28 (2), 181–189 (1971).CrossRefGoogle Scholar
  32. 32.
    F. T. M. Nieuwstadt, “The turbulent structure of the stable, nocturnal boundary layer,” J. Atmos. Sci. 41 (14), 2202–2216 (1984).CrossRefGoogle Scholar
  33. 33.
    A. A. Grachev, E. L. Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Persson, “The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer,” Boundary-Layer Meteorol. 147 (1), 51–82 (2013).CrossRefGoogle Scholar
  34. 34.
    P. Cellier and Y. Brunet, “Flux-gradient relationships above tall plant canopies,” Agric. For. Meteorol. 58, 93–117 (1992).CrossRefGoogle Scholar
  35. 35.
    A. V. Glazunov, “Numerical simulation of stably stratified turbulent flows over flat and urban surfaces,” Izv., Atmos. Ocean. Phys. 50 (3), 236–245 (2014).CrossRefGoogle Scholar
  36. 36.
    J. J. Finnigan, R. H. Shaw, and E. G. Patton, “Turbulence structure above a vegetation canopy,” J. Fluid Mech. 637, 387–424 (2009).CrossRefGoogle Scholar
  37. 37.
    Y. Brunet, J. J. Finnigan, and M. R. Raupach, “A wind tunnel study of air flow in waving wheat: Single-point velocity statistics,” Boundary-Layer Meteorol. 70 (1–2), 95–132 (1994).CrossRefGoogle Scholar
  38. 38.
    A. V. Glazunov, “Numerical simulation of stably stratified turbulent flows over an urban surface: Spectra and scales and parameterization of temperature and windvelocity profiles,” Izv., Atmos. Ocean. Phys. 50 (4), 356–368 (2014).CrossRefGoogle Scholar
  39. 39.
    A. M. Obukhov, “Turbulence scale distribution in arbitrary cross-section flows,” Prikl. Mat. Mekh. 6 (2–3) 209–221 (1942).Google Scholar
  40. 40.
    A. V. Glazunov, “Numerical modeling of turbulent flows over an urban-type surface: Computations for neutral stratification,” Izv., Atmos. Ocean. Phys. 50 (2), 134–142 (2014).CrossRefGoogle Scholar
  41. 41.
    J. Heiskanen, M. Rautiainen, P. Stenberg, V. H. Vesanto, L. Korhonen, and T. Majasalmi, “Seasonal variation in MODIS LAI for a boreal forest area in Finland,” Remote Sens. Environ. 126, 104–115 (2012).CrossRefGoogle Scholar
  42. 42.
    P. Alekseychik, I. Mammarella, S. Launiainen, and Ü. Rannik, and T. Vesala, “Evolution of the nocturnal decoupled layer in a pine forest canopy,” Agric. For. Meteorol. 174–175, 15–27 (2013).CrossRefGoogle Scholar
  43. 43.
    I. Mammarella, A. Nordbo, Ü. Rannik, S. Haapanala, J. Levula, H. Laakso, A. Ojala, O. Peltola, J. Heiskanen, J. Pumpanen, and T. Vesala, “Carbon dioxide and energy fluxes over a small boreal lake in Southern Finland,” J. Geophys. Res.: Biogeosci. 120, 1296–1314 (2015). doi 10.1002/2014JG002873CrossRefGoogle Scholar
  44. 44.
    D. Baldocchi, E. Falge, G. Lianhong, R. Olson, D. Hollinger, S. Running, P. Anthoni, Ch. Bernhofer, K. Davis, R. Evans, J. Fuentes, A. Goldstein, G. Katul, B. Law, X. Lee, Y. Malhi, T. Meyers, W. Munger, W. Oechel, U. Paw, K. Pilegaard, H. P. Schmid, R. Valentini, S. Verma, T. Vesala, K. Wilson, and S. Wofsy, “FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities,” Bull. Am. Meteorol. Soc. 82, 2415–2434 (2001).CrossRefGoogle Scholar
  45. 45.
    I. Mammarella, O. Peltola, A. Nordbo, L. Järvi, and Ü. Rannik, “Quantifying the uncertainty of eddy covariance fluxes due to the use of different software packages and combinations of processing steps in two contrasting ecosystems,” Atmos. Meas. Tech. 9, 4915–4933 (2016).CrossRefGoogle Scholar
  46. 46.
    J. R. Garratt, “The atmospheric boundary layer,” Earth Sci. Rev. 37 (1–2), 89–134 (1994).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • K. V. Barskov
    • 1
    • 2
  • A. V. Glazunov
    • 2
    • 3
  • I. A. Repina
    • 1
    • 2
    Email author
  • V. M. Stepanenko
    • 2
    • 5
  • V. N. Lykossov
    • 2
    • 3
  • I. Mammarella
    • 4
  1. 1.Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Research Computing CenterMoscow State UniversityMoscowRussia
  3. 3.Marchuk Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia
  4. 4.Institute for Atmospheric and Earth System Research/Physics, Faculty of ScienceUniversity of HelsinkiHelsinkiFinland
  5. 5.Faculty of GeographyMoscow State UniversityMoscowRussia

Personalised recommendations