Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 4, pp 344–353 | Cite as

Hydraulic Regimes of Flow over Mountains during Severe Downslope Windstorms: Novorossiysk Bora, Novaya Zemlya Bora, and Pevek Yuzhak

  • A. A. Shestakova
  • K. B. Moiseenko


Common features of the flow behavior over mountains within the hydraulic jump model are identified based on an analysis of 36 episodes of severe winds in the regions of Novorossiysk, Pevek, and Novaya Zemlya. In all these episodes, the incoming flow is characterized by a strong inversion layer at altitudes of 0.5–1.5 km and, in the case of bora, by a critical level in the wind profile in the middle troposphere, which creates conditions for a weakened dynamic interaction between the low-level air flowing over mountains and the upper layers of the atmosphere. The wind-speed increase on the lee slope is caused by the transition of the incoming flow from the subcritical to supercritical state. In this case, the velocity amplitude increases with increasing inversion intensity. Model estimates of wind-speed increase are in good agreement with observations at lee-side weather stations for episodes with a strong elevated inversion.


Novorossiysk bora Novaya Zemlya bora Pevek yuzhak downslope windstorms shallow-water equations hydraulic jump flow over mountains 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Arthun, R. B. Ingvaldsen, L. H. Smerdsrud, and C. Schrum, “Dense water formation and circulation in the Barents Sea,” Deep Sea Res. I 58, 801–817 (2011).CrossRefGoogle Scholar
  2. 2.
    N. Babic, Z. Vecenaj, H. Kozmar, et al., “On turbulent fluxes during strong winter bora wind,” Boundary-Layer Meteorol., 158, 331–350 (2016).CrossRefGoogle Scholar
  3. 3.
    D. R. Durran, “Another look at downslope windstorms. Part I: The development of analogs to supercritical flow in an infinitely deep, continuously stratified fluid,” J. Atmos. Sci. 43 (21), 2527–2543 (1986).CrossRefGoogle Scholar
  4. 4.
    A. Gohm, G. J. Mayr, A. Fix, and A. Giez, “On the onset of bora and the formation of rotors and jumps near a mountain gap,” Q. J. R. Meteorol. Soc. 134, 21–46 (2008).CrossRefGoogle Scholar
  5. 5.
    B. Grisogono and D. Belusic, “A review of recent advances in understanding the meso-and microscale properties of the severe bora winds,” Tellus 61A (1), 1–16 (2009).Google Scholar
  6. 6.
    V. Gru bišic, J. D. Doyle, J. Kuettner, et al., “The terrain-induced rotor experiment: A field campaign overview including observational highlights,” Bull. Am. Meteorol. Soc., 98 (10), 1513–1534 (2008).Google Scholar
  7. 7.
    D. D. Houghton and A. Kasahara, “Nonlinear shallow fluid flow over an isolated ridge,” Commun. Pure Appl. Math. 21, 1–23 (1968).CrossRefGoogle Scholar
  8. 8.
    S. Ivatek-Šahdan and M. Tudor, “Use of high-resolution dynamical adaptation in operational suite and research impact studies,” Meteorol. Z. 13 (2), 99–108 (2004).CrossRefGoogle Scholar
  9. 9.
    Q. Jiang, J. D. Doyle, and R. B. Smith, “Blocking, descent and gravity waves: Observations and modeling of a MAP northerly föhn event,” Q. J. R. Meteorol. Soc. 131, 675–701 (2005).CrossRefGoogle Scholar
  10. 10.
    J. B. Klemp and D. R. Durran, “Numerical modeling of bora winds,” Meteorol. Atmos. Phys. 36, 215–227 (1987).CrossRefGoogle Scholar
  11. 11.
    J. B. Klemp and D. K. Lilly, “Numerical simulation of hydrostatic mountain waves,” J. Atmos. Sci. 35, 78–107 (1978).CrossRefGoogle Scholar
  12. 12.
    J. B. Klemp and D. K. Lilly, “The dynamics of waveinduced downslope winds,” J. Atmos. Sci. 32, 320–339 (1975).CrossRefGoogle Scholar
  13. 13.
    Y.-L. Lin and T.-A. Wang, “Flow regimes and transient dynamics of two-dimensional stratified flow over an isolated mountain ridge,” J. Atmos. Sci. 53 (1), 139–158 (1996).CrossRefGoogle Scholar
  14. 14.
    D. T. Lindsey, “A high wind statistical prediction model for the Northern Front Range of Colorado,” J. Oper. Meteorol. 12 (3), 1–24 (2011).Google Scholar
  15. 15.
    R. R. Long, “Some aspects of the flow of stratified fluids II, Experiments with a two-fluid system,” Tellus 6, 97–115 (1954).Google Scholar
  16. 16.
    P. Markowski and Y. Richardson, Mesoscale Meteorology in Midlatitudes (Wiley, Chichester, West Sussex, 2010).CrossRefGoogle Scholar
  17. 17.
    S. Martin and D. J. Cavalieri, “Contributions of the Siberian shelf polynyas to the Arctic Ocean intermediate and deep-water,” J. Geophys. Res. 94 (C9), 12725–12738 (1989).CrossRefGoogle Scholar
  18. 18.
    M. Matson, “Large plume events in the Soviet Arctic,” Eos Trans. AGU 67, 1372–1373 (1986).CrossRefGoogle Scholar
  19. 19.
    A. E. Mercer, M. B. Richman, H. B. Bluestein, and J. M. Brown, “Statistical modeling of downslope windstorms in Boulder, Colorado,” Weather Forecasting 23 (6), 1176–1194 (2008).CrossRefGoogle Scholar
  20. 20.
    P. R. Miller and D. R. Durran, “On the sensitivity of downslope windstorms to the asymmetry of the mountain profile,” J. Atmos. Sci. 48 (12), 1457–1473 (1991).CrossRefGoogle Scholar
  21. 21.
    G. W. K. Moore, “The Novaya Zemlya Bora and its impact on Barents Sea air–sea interaction,” Geophys. Res. Lett. 40, 3462–3467 (2013).CrossRefGoogle Scholar
  22. 22.
    L. B. Nance and B. R. Colman, “Evaluating the use of a nonlinear two-dimensional model in downslope windstorm forecast,” Weather Forecasting 15, 715–729 (2000).CrossRefGoogle Scholar
  23. 23.
    F. C. Parmenter-Holt, “The large plumes of Novaya Zemlya,” Eos Trans. AGU 68, 1129–1142 (1987).CrossRefGoogle Scholar
  24. 24.
    A. K. Pattantyus, S. Chiao, and S. Czyzyk, “Improving high-resolution model forecasts of downslope winds in the Las Vegas Valley,” J. Appl. Meteorol. Climatol. 50 (6), 1324–1340 (2011).CrossRefGoogle Scholar
  25. 25.
    W. R. Peltier and T. L. Clark, “Nonlinear mountain waves in two and three spatial dimensions,” Q. J. R. Meteorol. Soc. 109, 527–548 (1983).CrossRefGoogle Scholar
  26. 26.
    P. A. Reinecke and D. R. Durran, “Initial-condition sensitivities and the predictability of downslope winds,” J. Atmos. Sci. 66, 3401–3418 (2009).CrossRefGoogle Scholar
  27. 27.
    P. Queney, G. A. Corby, N. Gerbier, H. Koschmieder, and J. Zierep, The Airflow over Mountains, Ed. by M. A. Alaka (WMO, Geneva, 1960).Google Scholar
  28. 28.
    R. B. Smith, “Aerial observations of Yugoslavian bora,” J. Atmos. Sci. 44 (2), 269–297 (1987).CrossRefGoogle Scholar
  29. 29.
    R. B. Smith, “Kelvin–Helmholtz instability in severe downslope wind flow,” J. Atmos. Sci. 48 (10), 1319–1324 (1991).CrossRefGoogle Scholar
  30. 30.
    R. B. Smith, “On severe downslope winds,” J. Atmos. Sci. 42 (23), 2597–2603 (1985).CrossRefGoogle Scholar
  31. 31.
    R. B. Smith, “The influence of mountains on the atmosphere,” Adv. Geophys. 21 (1), 81–230 (1979).Google Scholar
  32. 32.
    C. M. Smith and E. D. Skyllingstad, “Effects of inversion height and surface heat flux on downslope windstorm,” Mon. Weather Rev. 139, 3750–3764 (2011).CrossRefGoogle Scholar
  33. 33.
    S. B. Vosper, “Inversion effects on mountain lee waves,” Q. J. R. Meteorol. Soc. 130, 1723–1748 (2004).CrossRefGoogle Scholar
  34. 34.
    V. Vucetic, “Severe bora on the mid-Adriatic,” Hrvat. Meteorol. Cas. 28, 19–36 (1993).Google Scholar
  35. 35.
    R. G. Barry, Mountain Weather and Climate (Methuen, New York, 1981; Gidrometizdat, Leningrad, 1984).Google Scholar
  36. 36.
    D. V. Blinov, V. L. Perov, B. E. Peskov, and G. S. Rivin, “Extreme bora in Novorossiysk on February 7–8, 2012 and its forecasting with the COSMO-Ru model,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 4, 36–43 (2013).Google Scholar
  37. 37.
    A. V. Gavrikov and A. Yu. Ivanov, “Anomalously strong bora over the Black Sea: Observations from space and numerical modeling,” Izv., Atmos. Ocean. Phys. 51 (5), 546–555 (2015).CrossRefGoogle Scholar
  38. 38.
    V. V. Efimov and V. S. Barabanov, “Simulation of bora in Novorossiysk,” Russ. Meteorol. Hydrol. 38 (3), 171–176 (2013).CrossRefGoogle Scholar
  39. 39.
    P. I. Zimich, The Pevek Southerly (Gidrometeoizdat, Leningrad, 1991) [in Russian].Google Scholar
  40. 40.
    V. N. Kozhevnikov, Atmospheric Disturbance at Flow over Mountains (Nauchnyi Mir, Moscow, 1999) [in Russian].Google Scholar
  41. 41.
    V. N. Kozhevnikov and K. B. Moiseenko, “Simulation of the flow over a mountain range with height-varying free-stream characteristics,” Izv., Atmos. Ocean. Phys. 40 (2), 142–152 (2004).Google Scholar
  42. 42.
    V. N. Kozhevnikov, K. B. Moiseenko, and B. I. Volkov, “Flow over mountains with the stream velocity shear,” Izv., Atmos. Ocean. Phys. 52 (6), 587–595 (2016).CrossRefGoogle Scholar
  43. 43.
    O. Yu. Lavrova, A. G. Kostyanoi, S. A. Lebedev, M. I. Mityagina, A, I, Ginzburg, and N. A. Sheremet, Integrated Satellite Monitoring of Seas in Russia (IKI RAN, Moscow, 2011) [in Russian].Google Scholar
  44. 44.
    K. B. Moiseenko, “Consideration for the tropopause’s displacements in the problem of flow over mountains,” Izv., Atmos. Ocean. Phys. 43 (2), 158–167 (2007).CrossRefGoogle Scholar
  45. 45.
    P. A. Toropov, S. A. Myslenkov, and T. E. Samsonov, “Numerical modeling of bora in Novorossiysk and associated wind waves,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 2, 38–46 (2013).Google Scholar
  46. 46.
    A. A. Shestakova, “The Novaya Zamlya bora: Leeward characteristics and structure of incident flow,” Arkt. Anarkt., No. 2, 11–22 (2016).Google Scholar
  47. 47.
    A. A. Shestakova, K. B. Moiseenko, and P. A. Toropov, “Hydrodynamic aspects of the Novorossiysk bora episodes in 2012–2013,” Izv., Atmos. Ocean. Phys. 51 (5), 534–545 (2015).CrossRefGoogle Scholar
  48. 48.

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations