Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 2, pp 182–188 | Cite as

Surface Oscillations of a Free-Falling Droplet of an Ideal Fluid

  • A. V. Kistovich
  • Yu. D. Chashechkin


According to observations, drops freely falling in the air under the action of gravity are deformed and oscillate in a wide range of frequencies and scales. A technique for calculating surface axisymmetric oscillations of a deformed droplet in the linear approximation under the assumption that the amplitude and wavelength are small when compared to the droplet diameter is proposed. The basic form of an axisymmetric droplet is chosen from observations. The calculation results for surface oscillations agree with recorded data on the varying shape of water droplets falling in the air.


droplet shape surface oscillations observations calculation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. S. Rayleigh, “On the capillary phenomena of jets,” Proc. R. Soc. London 29, 71–97 (1879).CrossRefGoogle Scholar
  2. 2.
    A. G. Gorelik and V. V. Sterlyadkin, “Effect of raindrop vibration on the polarization characteristics of a radio echo,” Izv. Akad. Nauk: Ser. Fiz. Atmos. Okeana 25 (9), 960–968 (1989).Google Scholar
  3. 3.
    V. V. Sterlyadkin, “Unexpected properties of raindrops,” Priroda, No. 3, 64–65 (1989).Google Scholar
  4. 4.
    V. V. Sterlyadkin, “Field measurements of precipitation drop vibrations,” Izv. Akad. Nauk: Ser. Fiz. Atmos. Okeana 24 (6), 613–621 (1988).Google Scholar
  5. 5.
    V. V. Sterlyadkin, “Measurement of resonance properties of vibrating drops,” Izv. Akad. Nauk: Ser. Fiz. Atmos. Okeana 18 (1), 98–101 (1982).Google Scholar
  6. 6.
    M. Szákall, S. K. Mitra, K. Diehl, and S. Borrmann, “Shapes and oscillations of falling raindrops—A review,” Atmos. Res. 97 (4), 416–425 (2010).CrossRefGoogle Scholar
  7. 7.
    C. W. Ulbrich, “Natural variations in the analytical form of the raindrop size distribution,” J. Clim. Appl. Meteorol. 22 (10), 1764–1775 (1984).CrossRefGoogle Scholar
  8. 8.
    K. J. Al-Jumily, R. B. Charlton, and R. G. Humphries, “Identification of rain and hail with circular polarization radar,” J. Appl. Meteorol. 31, 1075–1087 (1991).CrossRefGoogle Scholar
  9. 9.
    A. J. Illingworth, T. M. Blackman, and W. F. Goddard, “Improved rainfall estimates in convective storms using polarization diversity radar,” Hydrol. Earth Syst. Sci. 4 (4), 555–563 (2000).CrossRefGoogle Scholar
  10. 10.
    H. An, W. Yan, Y. Huang, W. Ai, Y. Wang, X. Zhao, and X. Huang, “GNSS measurement of rain rate by polarimetric phase shift: Theoretical analysis,” Atmosphere 7 (8), 101 (2016). doi 10.3390/atmos7080101CrossRefGoogle Scholar
  11. 11.
    A. I. Grigor’ev and S. O. Shiryaeva, “Electromagnetic radiation from linearly and nonlinearly oscillating charge drops,” Tech. Phys. 61 (12), 1885–1890 (2016).CrossRefGoogle Scholar
  12. 12.
    L. D. Landau and E. M. Lifshits, Theoretical Physics, vol. 6: Hydromechanics (Nauka, Moscow, 2015) [in Russian].Google Scholar
  13. 13.
    I. A. Lukovskii and M. A. Chernova, “Nelineinaya modal’naya teoriya kolebanii kapli,” Akust. Visn. 14 (3), 23–45 (2011).Google Scholar
  14. 14.
    T. Watanabe, “Non-linear oscillations and rotation of a liquid droplet,” Int. J. Geol. 4 (1), 5–13 (2010).Google Scholar
  15. 15.
    W. H. Reid, “The oscillation of the viscous liquid drop,” Q. Appl. Math. 18, 86–89 (1960).CrossRefGoogle Scholar
  16. 16.
    E. Hervieu, N. Coutris, and C. Boichon, “Oscillations of a drop in aerodynamic levitation,” Nucl. Eng. Des. 204 (1–3), 167–175 (2001).CrossRefGoogle Scholar
  17. 17.
    Yu. D. Chashechkin and V. E. Prokhorov, “Transformation of the bridge during drop separation,” J. Appl. Mech. Tech. Phys. 57 (3), 402–415 (2016).CrossRefGoogle Scholar
  18. 18.
    G. Korn and T. Korn, Mathematical handbook for Scientists and Engineers (McGraw Hill, New York, 1968; Nauka, Moscow, 1984).Google Scholar
  19. 19.
    A. I. Korshunov, “Oscillations of a water droplet separated from the connection,” Fluid Dyn. 50 (4), 585–589 (2015).CrossRefGoogle Scholar
  20. 20.
    T. G. Theofanous, “Aerobreakup of Newtonian and viscoelastic liquids,” Annu. Rev. Fluid Mech. 43 (1), 661–690 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Ishlinsky Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia

Personalised recommendations