Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 1, pp 56–64 | Cite as

Assimilation of the AVISO Altimetry Data into the Ocean Dynamics Model with a High Spatial Resolution Using Ensemble Optimal Interpolation (EnOI)

  • M. N. Kaurkin
  • R. A. Ibrayev
  • K. P. Belyaev
Article

Abstract

A parallel realization of the Ensemble Optimal Interpolation (EnOI) data assimilation (DA) method in conjunction with the eddy-resolving global circulation model is implemented. The results of DA experiments in the North Atlantic with the assimilation of the Archiving, Validation and Interpretation of Satellite Oceanographic (AVISO) data from the Jason-1 satellite are analyzed. The results of simulation are compared with the independent temperature and salinity data from the ARGO drifters.

Keywords

ocean modeling data assimilation ensemble optimal interpolation satellite data AVISO ARGO 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    GODAE OceanView Science Team, Work Plan. http://www.godae-oceanview.org.
  2. 2.
    A. Schiller and G. B. Brassington, Operational Oceanography in the 21st Century (Springer, Dordrecht, 2011).CrossRefGoogle Scholar
  3. 3.
    V. I. Agoshkov, V. M. Ipatova, V. B. Zalesny, E. I. Parmuzin, and V. P. Shutyaev, “Problems of variational assimilation of observational data for ocean general circulation models and methods for their solution,” Izv., Atmos. Ocean. Phys. 46 (6), 677–712 (2010).CrossRefGoogle Scholar
  4. 4.
    V. I. Agoshkov, E. I. Parmuzin, and V. P. Shutyaev, “Observational data assimilation in the problem of Black Sea circulation and sensitivity analysis of its solution,” 49 (6), 592–602 (2013).Google Scholar
  5. 5.
    G. Evensen, Data Assimilation—The Ensemble Kalman Filter (Springer, Berlin, 2009).Google Scholar
  6. 6.
    P. J. Van Leeuwen, “Particle filtering in geophysical systems,” Mon. Weather Rev. 137, 4089–4114 (2009).CrossRefGoogle Scholar
  7. 7.
    P. J. Van Leeuwen, “Efficient nonlinear data-assimilation in geophysical fluid dynamics,” Comput. Fluids 46, 52–58 (2011).CrossRefGoogle Scholar
  8. 8.
    K. Belyaev, C. A. S. Tanajura, and J. J. O’Brien, “Application of the Fokker-Planck equation to data assimilation into hydrodynamical models,” J. Math. Sci. 99 (4), 1393–1402 (2000).CrossRefGoogle Scholar
  9. 9.
    G. I. Marchuk and V. V. Penenko, “Application of optimization methods to the problem of mathematical simulation of atmospheric processes and environment,” in Modelling and Optimization of Complex Systems: Proceedings of the IFIP-TC7 Working Conference, Ed. by G. I. Marchuk, (Springer, New York, 1978), pp. 240–252.Google Scholar
  10. 10.
    V. V. Penenko and N. N. Obraztsov, “Variational method for the adaptation of the fields of meteorological variables,” Meteorol. Gidrol., No. 11, 1–11 (1976).Google Scholar
  11. 11.
    V. V. Knysh, G. K. Korotaev, A. I. Mizyuk, and A. S. Sarkisyan, “Assimilation of hydrological observation data for calculating currents in seas and oceans,” Izv., Atmos. Ocean. Phys. 48 (1), 57–73 (2012).CrossRefGoogle Scholar
  12. 12.
    V. V. Knysh, R. A. Ibrayev, G. K. Korotaev, and N. V. Inyushina, “Seasonal variability of climatic currents in the Caspian Sea reconstructed by assimilation of climatic temperature and salinity into the model of water circulation,” Izv., Atmos. Ocean. Phys. 44 (2), 236–249 (2008).CrossRefGoogle Scholar
  13. 13.
    V. V. Knysh, G. K. Korotaev, and P. N. Lishaev, “A technique for using the three-dimensional temperature and salinity fields of the Black Sea reconstructed from few altimetry measurement data in operational prognostic models,” Morsk. Gidrofiz. Zh. 188 (2), 53–69 (2016).Google Scholar
  14. 14.
    G. Larnicol, S. Guinehut, M.-H. Rio, et al., “The global observed ocean products of the French Mercator project,” in Proceedings of the 15 Years of Progress in Radar Altimetry Conference, 2006, SP-614.Google Scholar
  15. 15.
    C. A. S. Tanajura and K. Belyaev, “A sequential data assimilation method based on the properties of a diffusion-type process,” Appl. Math. Model. 33 (5), 2165–2174 (2009).CrossRefGoogle Scholar
  16. 16.
    R. Bleck, “An oceanic general circulation model framed in hybrid isopycnic Cartesian coordinates,” Ocean Model. 4, 55–88 (2002).Google Scholar
  17. 17.
    K. P. Belyaev, C. A. S. Tanajura, and N. P. Tuchkova, “Comparison of methods for ARGO drifters data assimilation into a hydrodynamical model of the ocean,” Oceanology (Engl. Transl.) 52 (5), 593–603 (2012).Google Scholar
  18. 18.
    E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability (Cambridge University Press, Cambridge, 2003).Google Scholar
  19. 19.
    P. R. Oke, G. Larnicol, Y. Fujii, et al., “Assessing the impact of observations on ocean forecasts and reanalyses. Part 1: Global studies,” J. Oper. Oceanogr. 8 (1), 49–62 (2015).CrossRefGoogle Scholar
  20. 20.
    M. N. Kaurkin, R. A. Ibrayev, and K. P. Belyaev, “ARGO data assimilation into the ocean dynamics model with high spatial resolution using ensemble optimal interpolation (EnOI),” Oceanology (Engl. Transl.) 56 (6), 774–781 (2016).Google Scholar
  21. 21.
    V. V. Kalmykov and R. A. Ibrayev, “A framework for the ocean—ice—atmosphere—land coupled modeling on massively-parallel architectures,” Vychisl. Metody Program. 14 (2), 88–95 (2013).Google Scholar
  22. 22.
    V. V. Kalmykov and R. A. Ibrayev, “Fast algorithm for solving the system of shallow water equations on distributed memory computers,” Vestn. Ufim. Gos. Aviats. Tekh. Univ. 17 (5), 252–259 (2013).Google Scholar
  23. 23.
    S. M. Griffies, A. Biastoch, C. Böning, et al., “Coordinated Ocean—Ice Reference Experiments (COREs),” Ocean Model. 26 (1–2), 1–46 (2009).CrossRefGoogle Scholar
  24. 24.
    C. Schrum and J. Backhaus, “Sensitivity of atmosphere—ocean heat exchange and heat content in North Sea and Baltic Sea,” Tellus A 51 (4), 526–549 (1999).CrossRefGoogle Scholar
  25. 25.
    V. V. Kalmykov, R. A. Ibrayev, and K. V. Ushakov, “Problems and challenges in building a high-resolution model of the Earth system,” in Supercomputer Technologies in Science, Education, and Industry, Ed. by V. A. Sadovnichii, G. I. Savin, and Vl. V. Voevodin (MGU, Moscow, 2014), pp. 14–22 [in Russian].Google Scholar
  26. 26.
    R. A. Ibrayev, R. N. Khabeev, and K. V. Ushakov, “Eddy-resolving 1/10° model of the World Ocean,” Izv., Atmos. Ocean. Phys. 48 (1), 37–46 (2012).CrossRefGoogle Scholar
  27. 27.
    K. V. Ushakov, T. B. Grankina, and R. A. Ibrayev, “Modeling the water circulation in the North Atlantic in the scope of the CORE-II experiment” Izv., Atmos. Ocean. Phys. 52 (4), 365–375 (2016).CrossRefGoogle Scholar
  28. 28.
    K. V. Ushakov, R. A. Ibrayev, and V. V. Kalmykov, “Simulation of the World Ocean climate with a massively parallel numerical model,” Izv., Atmos. Ocean. Phys. 51 (4), 362–380 (2015).CrossRefGoogle Scholar
  29. 29.
    M. N. Kaurkin, R. A. Ibrayev, and K. P. Belyaev, “Data assimilation in the ocean circulation model of high spatial resolution using the methods of parallel programming,” Russ. Meteorol. Hydrol. 41 (7), 479–486 (2016).CrossRefGoogle Scholar
  30. 30.
    P. Sakov and P. A. Sandery, “Comparison of EnOI and EnKF regional ocean reanalysis systems,” Ocean Model. 89, 45–60 (2015).CrossRefGoogle Scholar
  31. 31.
    P. R. Oke, G. B. Brassington, D. A. Griffin, and A. Schiller, “Ocean data assimilation: A case for ensemble optimal interpolation,” Aust. Meteorol. Oceanogr. J. 59, 67–76 (2010).CrossRefGoogle Scholar
  32. 32.
    P. Sakov, F. Counillon, L. Bertino, et al., “TOPAZ4: An ocean—sea ice data assimilation system for the North Atlantic and Arctic,” Ocean Sci. 8, 633–656 (2012).CrossRefGoogle Scholar
  33. 33.
    M. Kaurkin, R. Ibrayev, and A. Koromyslov, “EnOI-based data assimilation technology for satellite observations and ARGO float measurements in a high resolution global ocean model using the CMF platform,” in Supercomputing. RuSCDays 2016, Ed. by V. Voevodin and S. Sobolev (Springer, 2016), pp. 57-66.Google Scholar
  34. 34.
    V. V. Kalmykov and R. A. Ibrayev, “CMF—A framework for a high-resolution model of the Earth system,” in Proceedings of the 1st Conference on Supercomputing (RusCDays) (MGU, Moscow, 2015), pp. 34–40 [in Russian].Google Scholar
  35. 35.
    J. I. Antonov, D. Seidov, T. P. Boyer, et al., World Ocean Atlas 2009, Ed. by S. Levitus (NESDIS, U.S. Government Printing Office, Washington, D.C., 2010).Google Scholar
  36. 36.
    W. Large and S. Yeager, “The global climatology of an interannually varying air—sea flux data set,” Clim. Dyn. 33 (2–3), 341–364 (2009).CrossRefGoogle Scholar
  37. 37.
    C. A. S. Tanajura, A. N. Santana, D. Mignac, L. N. Lima, K. Belyaev, and X. Ji-Ping, “The REMO ocean data assimilation system into HYCOM (RODAS_H): General description and preliminary results,” Atmos. Ocean. Sci. Lett. 7 (5), 464–470 (2014).CrossRefGoogle Scholar
  38. 38.
    C. A. S. Tanajura, L. N. Lima, and K. P. Belyaev, “Assimilation of satellite surface-height anomalies data into a hybrid coordinate ocean model (HYCOM) over the Atlantic Ocean,” Oceanology (Engl. Transl.) 55 (5), 667–678 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. N. Kaurkin
    • 1
    • 2
    • 3
  • R. A. Ibrayev
    • 1
    • 2
    • 3
    • 4
  • K. P. Belyaev
    • 3
    • 5
  1. 1.Hydrometeorological Research Center of the Russian FederationMoscowRussia
  2. 2.Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia
  3. 3.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  4. 4.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow oblastRussia
  5. 5.Dorodnitsyn Federal Research Center of Informatics and ManagementRussian Academy of SciencesMoscowRussia

Personalised recommendations