Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 1, pp 101–105 | Cite as

Dynamics of a Wave Packet on the Surface of an Inhomogeneously Vortical Fluid (Lagrangian Description)

  • A. A. Abrashkin
  • E. N. PelinovskyEmail author


A nonlinear Schrödinger equation (NSE) describing packets of weakly nonlinear waves in an inhomogeneously vortical infinitely deep fluid has been derived. The vorticity is assumed to be an arbitrary function of Lagrangian coordinates and quadratic in the small parameter proportional to the wave steepness. It is shown that the modulational instability criteria for the weakly vortical waves and potential Stokes waves on deep water coincide. The effect of vorticity manifests itself in a shift of the wavenumber of high-frequency filling. A special case of Gerstner waves with a zero coefficient at the nonlinear term in the NSE is noted.


nonlinear Schrödinger equation vorticity Gerstner wave 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. E. Zakharov, “Stability of periodic waves of finite amplitude on a surface of deep fluid. J Appl Mech Tech Phys 2: 190–194 (1968).Google Scholar
  2. 2.
    H. Hasimoto and H. Ono, “Nonlinear modulation of gravity waves,” J. Phys. Soc. Jpn. 33, 805–811 (1972).CrossRefGoogle Scholar
  3. 3.
    A. Davey, “The propagation of a weak nonlinear wave,” J. Fluid Mech. 53, 769–781 (1972).CrossRefGoogle Scholar
  4. 4.
    H. C. Yuen and B. M. Lake, “Nonlinear deep water waves: Theory and experiment,” Phys. Fluids 18, 956–960 (1975).CrossRefGoogle Scholar
  5. 5.
    R. S. Johnson, “On the modulation of water waves on shear flows,” Proc. R. Soc. London, Ser. A 347, 537–546 (1976).CrossRefGoogle Scholar
  6. 6.
    A. I. Baumstein, “Modulation of gravity waves with shear in water,” Stud. Appl. Math. 100, 365–390 (1998).CrossRefGoogle Scholar
  7. 7.
    R. Thomas, C. Kharif, and M. Manna, “A nonlinear Schrödinger equation for water waves on finite depth with constant vorticity,” Phys. Fluids 24, 127102 (2012).CrossRefGoogle Scholar
  8. 8.
    K. B. Hjelmervik and K. Trulsen, “Freak wave statistics on collinear currents,” J. Fluid Mech. 637, 267–284 (2009).CrossRefGoogle Scholar
  9. 9.
    A. A. Abrashkin, “Gravity surface waves of the envelope in a vortical fluid,” Izv. Akad. Nauk: Fiz. Atmos. Okeana 27 (6), 633–637 (1991).Google Scholar
  10. 10.
    A. A. Abrashkin and E. I. Yakubovich, Vortex Dynamics in Lagrangian Description (Fizmatlit, Moscow, 2006) [in Russian].Google Scholar
  11. 11.
    L. N. Sretenskii, Theory of Wave Motions of Fluids (Nauka, Moscow, 1977) [in Russian].Google Scholar
  12. 12.
    D. H. Peregrine, “Water waves, nonlinear Schrödinger equations and their solutions,” J. Aust. Math. Soc., Ser. B 25, 16–43 (1983).CrossRefGoogle Scholar
  13. 13.
    N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Generation of periodic trains of picosecond pulses in an optical fiber: Exact solutions,” Sov. Phys. JETP 62 (5), 894–899 (1985).Google Scholar
  14. 14.
    E. A. Kuznetsov, “Solitons in a parametric instable plasma,” Sov. Phys. Dokl. 22, 507–508 (1977).Google Scholar
  15. 15.
    A. Slunyaev, I. Didenkulova, and E. Pelinovsky, “Rogue waves,” Contemp. Phys. 52, 571–590 (2011).CrossRefGoogle Scholar
  16. 16.
    A. A. Gelash and V. E. Zakharov, “Superregular solitonic solutions: A novel scenario for the nonlinear stage of modulation instability,” Nonlinearity 27, R1–R39 (2014).CrossRefGoogle Scholar
  17. 17.
    V. P. Ruban, “On the nonlinear Schrödinger equation for waves on a nonuniform current,” JETP Lett. 95 (9), 486–491 (2012).CrossRefGoogle Scholar
  18. 18.
    J. He and Y. Li, “Designable integrability of the variable coefficient nonlinear Schrödinger equations,” Stud. Appl. Math. 126, 1–15 (2010).CrossRefGoogle Scholar
  19. 19.
    H.-H. Chen and C.-S. Liu, “Solitons in nonuniform media,” Phys. Rev. Lett. 37, 693–697 (1976).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.National Research University Higher School of EconomicsNizhny NovgorodRussia
  2. 2.Institute of Applied PhysicsRussian Academy of SciencesNizhny NovgorodRussia
  3. 3.Nizhny Novgorod State Technical UniversityNizhny NovgorodRussia

Personalised recommendations