Izvestiya, Atmospheric and Oceanic Physics

, Volume 53, Issue 9, pp 955–964 | Cite as

Tendencies in Coccolithophorid Blooms in Some Marine Environments of the Northern Hemisphere according to the Data of Satellite Observations in 1998–2013

  • D. KondrikEmail author
  • D. Pozdnyakov
  • L. Pettersson
Stydying Atmosphere and Oceans from Space


Based on the method developed for the delineation of E. huxleyi blooms, a new technique is achieved for (1) the automated detection of E. huxleyi blooms among coexisting massive blooms of microalgae species of other phytoplankton groups and (2) quantifying the boom surface of this type of coccolithophores. As a result, according to the data of the Climate Change Initiative Ocean Colour (OC CCI) for 1998–2013, we have obtained multiyear time series of variability in both the incidence of E. huxleyi bloom and its area in the North, Norwegian, Greenland, Barents, and Bering seas. It is found that E. huxleyi blooms propagate within the intra-annual cycle from the studied middle-latitude marine areas towards the northern areas of the Northern Atlantic Ocean (NAO) and the Arctic Ocean (AO) following the pathways of the main Gulfstream and its branches. It is also found that E. huxleyi blooms are formed annually, initially in the vicinity of the British Islands; then they successively emerge in the northward direction following the western coast of the Great Britain, turn over its northern extremity to reach, firstly, the North Sea (in May), the Norwegian Sea, and finally the Greenland Sea (in June). Then they burst out in the Barents Sea, where the typical period of blooming lasts until late August and, in some years, even to mid-September. We determine the patterns of maximal rates and duration of blooms for each of the seas studied in the Atlantic and Arctic Oceans. As for the Bering Sea, the temporal and spatial variability in the growth of E. huxleyi has an irregular pattern: after a period of remarkably high expression of this phenomenon in 1998–2001, there was an abrupt decrease in both the number and, especially, extent of bloom areas.


marine environments in the Northern Hemisphere OC CCI data blooms of Emiliania huxleyi bloom area dynamics multiyear series patterns 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Archer, S.D., Ragni, M., Webster, R., Airs, R.L., and Geide, R.J., Dimethyl sulfoniopropionate and dimethyl sulfide production in response to photoinhibition in Emiliania huxleyi, Limnol. Oceanogr., 2010, vol. 55, no. 4, pp. 1579–1589. doi 10.4319/lo2010.55.4.1579CrossRefGoogle Scholar
  2. Arrigo, K. and van Dijken, G., Secular trends in Arctic Ocean net primary production, J. Geophys. Res., 2011, vol. 116, C09011, doi 10.1029/2011JC007151Google Scholar
  3. Balch, W.M., Holligan, P.M., Ackleson, S.G., and Voss, K.J., Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine, Limnol. Oceanogr., 1991, vol. 36, no. 4, pp. 629–643.CrossRefGoogle Scholar
  4. Balch, W.M., Gordon, H.R., Bowler, B.C., Drapeau, D.T., and Booth, E.S., Calcium carbonate measurements in the surface global ocean based on moderate resolution imaging spectroradiometer data, J. Geophys. Res., 2005, vol. 110, C07001, doi 10.1029/2004JC002560CrossRefGoogle Scholar
  5. Bates, N.R. and Mathis, J.T., The Arctic Ocean marine carbon cycle: Evaluation of air–sea CO2 exchanges, ocean acidification impacts and potential feedbacks, Biogeosciences, 2009, vol. 6, pp. 2433–2459.Google Scholar
  6. Brodzik, M.J., Billingsley, B., Haran, T., Raup, B., and Savoie, M.H., EASE-Grid 2.0: Incremental but significant improvements for Earth-gridded data sets, ISPRS Int. J. Geo-Inf., 2012, vol. 1, no. 1, pp. 32–45. 10.3390/ijgi1010032CrossRefGoogle Scholar
  7. Brodzik, M.J., Billingsley, B., Haran, T., Raup, B., and Savoie, M.H., Correct.: EASE-Grid 2.0: Incremental but significant improvements for Earth-gridded data sets, ISPRS Int. J. Geo-Inf., 2014, vol. 3, no. 3, pp. 1154–1156. doi 10.3390/ijgi3031154CrossRefGoogle Scholar
  8. Bukata, R.P., Jerome, J.H., Kondratyev, A.S., and Pozdnyakov, D.V., Optical Properties and Remote Sensing of Inland and Coastal Waters, Boca Raton, FL: CRC Press, 1995.Google Scholar
  9. Burenkov, V.I., Kopelevich, O.V., Rat’kova, T.N., and Sheberstov, S.V., Satellite observations of the coccolitho-phorid bloom in the Barents Sea, Oceanology (Engl. Transl.), 2011, vol. 51, no. 5, pp. 766–774.Google Scholar
  10. Chen, C.-T.A., Carbonate chemistry of oceans, Oceanography, 2012, vol. 1, no. 1, pp. 1–7.Google Scholar
  11. Coccolithophores—from Molecular Processes to Global Impact, Thierstein, H.R., and Young, J.B., Eds., Springer, 2004. doi 10.1007/978-3-662-06278-4Google Scholar
  12. Dimiza, M., Triantaphyllou, M.V., and Dermitzakis, M.D., Vertical distribution and ecology of living coccolithophores in the marine ecosystems of Andros Island (Middle Aegean Sea) during late summer 2001, Hell. J. Geosci., 2008, vol. 43, pp. 7–20.Google Scholar
  13. Feely, R.A., Sabine, C.L., Lee, K., Berelson, W., Kleypas, J., Fabry, V.J., and Millero, F.J., Impact of anthropogenic CO2 on CaCO3 system in the oceans, Science (Washington, D.C.), 2004, vol. 305, pp. 362–366.CrossRefGoogle Scholar
  14. Garcia, C.A.E., Garcia, V.M.T., Dogliotti, A.I., Ferreira, A., Romero, S.I., Mannino, A., Souza, M.S., and Mata, M.M., Environmental conditions and bio-optical signature of a coccolithophore bloom in the Patagonian shelf, J. Geophys. Res., 2011, vol. 116, C03025. 10.1029/2010JC006595Google Scholar
  15. Iida, T., Saitoh, S.I., Miyamura, T., Toratani, M., Fukushima, H., and Shiga, N., Temporal and spatial variability of coccolithophore blooms in the eastern Bering Sea, 1998–2001, Prog. Oceanogr., 2002, vol. 55, pp. 165–175.CrossRefGoogle Scholar
  16. IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Pachauri, R.K. and Meyer, L.A., Eds., Geneva: IPCC, 2014.Google Scholar
  17. Karabashev, G.S., Sheberstov, S.V., and Yakubenko, V.G., The June maximum of normalized radiance and its relation to the hydrological conditions and coccolithophorid bloom in the black sea, Oceanology (Engl. Transl.), 2006, vol. 46, no. 3, pp. 305–317.Google Scholar
  18. Kiehl, J. and Kevin, E., Earth’s annual global mean energy budget, Bull. Am. Meteorol. Soc., 2002, vol. 78, no. 2, pp. 197–208. doi 10.1175/1520-0477CrossRefGoogle Scholar
  19. Kopelevich, O.V., Burenkov, V.I., Vazyulya, S.V., and Sheberstov, S.V., Problems of indication of coccolithophorid blooms according to satellite data, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2012, vol. 9, no. 5, pp. 241–250.Google Scholar
  20. Kopelevich, O., Burenkov, V., and Shebertov, S., Satellite monitoring of coccolithophore blooms in the Black Sea from ocean colour data, Remote Sens. Environ., 2014, vol. 146, pp. 113–123.CrossRefGoogle Scholar
  21. Kopelevich, O.V., Sheberstov, S.V., Vazyulya, S.V., and Burenkov, V.I., Seasonal and interannual variability of biooptical characteristics of surface waters of the Barents, White, Black, and Caspian seas according to satellite data, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2015, vol. 8, no. 1, pp. 7–16.Google Scholar
  22. Korosov, A.A., Morozov, E.A., Pozdnyakov, D.V., Pettersson, L.H., and Grassl, H., Identification and mapping of coccolithophore blooming areas in the Bay of Biscay according to satellite data, Issled. Zemli Kosmosa, 2009, no. 3, pp. 67–78.Google Scholar
  23. Merico, A., Tyrrell, T., Brown, C.W., Groom, S.B., and Miller, P.I., Analysis of satellite imagery for Emiliania huxleyi blooms in the Bering Sea before 1997, Geophys. Res. Lett., 2003, vol. 30, no. 6, 1337. doi 10.1029/2002gl016648CrossRefGoogle Scholar
  24. Milliman, J., Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state, Global Biogeochem. Cycle, 1993, vol. 7, pp. 927–957.CrossRefGoogle Scholar
  25. Milliman, J., Troy, P.J., Balch, W., Adams, A.K., Li, Y.-H., and Mackenzie, F.T., Biologically mediated dissolution of calcium carbonate above the chemical lysocline?, Deep-Sea Res., 1999, vol. 93, no. 10, pp. 1653–1669.CrossRefGoogle Scholar
  26. Mobley, C.D., Estimation of the remote-sensing reflectance from above-water measurements, Appl. Opt., 1999, vol. 38, no. 36, pp. 7442–7455.CrossRefGoogle Scholar
  27. Moore, T.S., Dowell, M.D., and Franz, B.A., Detection of coccolithophore blooms in ocean color satellite imagery: A generalized approach for use with multiple sensors, Remote Sens. Environ., 2012, vol. 117, pp. 249–263. doi 10.1016/j.rse.2011.10.001CrossRefGoogle Scholar
  28. Morozov, E., Pozdnyakov, D., Smyth, T., Sychev, V., and Grassl, H., Space-borne study of seasonal, multi-year, and decadal phytoplankton dynamics in the Bay of Biscay, Int. J. Remote Sens., 2013, vol. 34, no. 4, pp. 1297–1331. Scholar
  29. Najjar, R.G., Samiento, J.L., and Toggweiler, J.R., Downward transport and fate of organic matter in the ocean: Simulations with a general circulation model, Global Biogeochem. Cycles, 1992, vol. 6, pp. 45–76. doi 10.1029/91GB02718CrossRefGoogle Scholar
  30. Petrenko, D.A., Zabolotskikh, E.V., Pozdnyakov, D.V., Counillon, F., and Karlin, L.N., Interannual variations and trend of the production of inorganic carbon by coccolithophores in the Arctic in 2002–2010 based on satellite data, Izv., Atmos. Ocean. Phys., 2013a, vol. 49, no. 9, pp. 871–878. doi 10.7868/S0205961413020085CrossRefGoogle Scholar
  31. Petrenko, D., Pozdnyakov, D., Johannessen, J., Counillon, F., and Sychov, V., Satellite-derived multi-year trend in primary production in the Arctic Ocean, Int. J. Remote Sens., 2013b, vol. 34, no. 11, pp. 3903–3937.CrossRefGoogle Scholar
  32. Schueter, L., Lohbeck, K.T., Gutowska, M.A., Groeger, J.P., Reibesell, U., and Reusch, T.B.H., Adaptation of a globally important coccolithophore to ocean warming and acidification, Nature Clim. Change, 2014, vol. 4, pp. 1024–1030.CrossRefGoogle Scholar
  33. Sukhanova, I.N., Flint, M.V., Whitledge, T.E., and Lessard, E.J., Coccolithophorids in the phytoplankton of the eastern Bering Sea after the anomalous bloom of 1997, Oceanology (Engl. Transl.), 2004, no. 44(5), pp. 665–678.Google Scholar
  34. The Eastern Basin Water and Currents in the Barents Sea, Ozhigin, A.G., Trofimov, V.A., and Ivshin, V.A., Eds., Murmansk, ICES CM, 2000.Google Scholar
  35. Townsend, D.W., Keller, M.D., Holligan, P.M., Ackleson, S.G., and Balch, W.M., Blooms of the coccolithophore Emiliania huxleyi with respect to hydrography in the Gulf of Maine, Cont. Shelf Res., 1994, vol. 14, no. 9, pp. 979–1000.CrossRefGoogle Scholar
  36. Tozzi, S., Schofield, O., and Falkowski, P., Historical climate change and ocean turbulence as selective agents for two key phytoplankton functional groups, Mar. Ecol.-Prog. Ser., 2004, vol. 274, pp. 123–132.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Arctic and Antarctic Research InstituteSt. PetersburgRussia
  2. 2.Scientific Foundation “Nansen International Environmental and Remote Sensing Center”St. PetersburgRussia
  3. 3.Nansen Environmental and Remote Sensing CentreBergenNorway

Personalised recommendations