Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 53, Issue 6, pp 641–649 | Cite as

On the vertical velocity component in the mesoscale Lofoten vortex of the Norwegian Sea

  • T. V. Belonenko
  • I. L. Bashmachnikov
  • A. V. Koldunov
  • P. A. Kuibin
Article
  • 28 Downloads

Abstract

For the first time, the concepts of the theory of helical vortices have been applied to the Lofoten vortex of the Norwegian Sea. The estimates for azimuthal and vertical velocities have been obtained from the Massachusetts Institute of Technology general circulation model (MITgcm) for 1992–2012. The columnar vortex model with helical vorticity lines and distributions has been adapted to Scully and Rayleigh vortices. It has been shown that the vortex parameters can be determined simply from mass balance equations. The parameters of the helical vortex simulating the structure of the Lofoten vortex have been found and the radial distributions of azimuthal and vertical velocity components have been constructed. The resulting data can be interesting for an analysis of the three-dimensional structure of mesoscale vortices in the ocean.

Keywords

theory of helical vortices vertical structure Scully distribution Rayleigh distribution Lofoten vortex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. V. Alekseev, M. V. Bagryantsev, P. V. Bogorodskii, V. B. Vasin, and P. E. Shirokov, "The water structure and circulation in the northeast of the Norwegian Sea," in Arctic and Antarctic Problems, Vol. 65 (Gidrometeoizdat, Leningrad, 1991), pp. 14–23 [in Russian].Google Scholar
  2. 2.
    V. V. Ivanov and A. A. Korablev, "Formation and regeneration of the intrapycnocline lens in the Norwegian Sea," Meteorol. Gidrol., No. 9, 102–110 (1995a).Google Scholar
  3. 3.
    V. V. Ivanov and A. A. Korablev, "Dynamics of the intrapycnocline lens in the Norwegian Sea," Meteorol. Gidrol., No. 10, 55–62 (1995b).Google Scholar
  4. 4.
    D. L. Volkov, T. V. Belonenko, and V. R. Foux, "Puzzling over the dynamics of the Lofoten Basin—a sub- Arctic hot spot of ocean variability," Geophys. Res. Lett. 40, 1–6 (2013). doi 10.1002/grl.50126CrossRefGoogle Scholar
  5. 5.
    P.-M. Poulain, A. Warn-Varnas, and P. P. Niiler, "Near-surface circulation of the Nordic seas as measured by Lagrangian drifters," J. Geophys. Res, 101 (C8), 18237–18258 (1996).CrossRefGoogle Scholar
  6. 6.
    A. Kohl, "Generation and stability of a quasi-permanent vortex in the Lofoten basin," J. Phys. Oceanogr. 37, 2637–2651 (2007). doi 10.1175/2007JPO3694CrossRefGoogle Scholar
  7. 7.
    M. Andersson, J. H. LaCasce, I. Koszalka, K. A. Orvik, and C. Mauritzen, "Variability of the Norwegian Atlantic Current and associated eddy field from surface drifters," J. Geophys. Res. 116, C08032 (2011). doi 10.1029/2011JC007078Google Scholar
  8. 8.
    D. L. Volkov, A. A. Koubryakov, and R. Lumpkin, "Formation and variability of the Lofoten Basin vortex in a high-resolution ocean model," Deep-Sea Res., Part I 105, 142–157 (2015). doi 10.1016/ j.dsr.2015.09.001CrossRefGoogle Scholar
  9. 9.
    R. P. Raj, L. Chafik, J. Even, O. Nilsen, T. Eldevik, and I. Halo, "The Lofoten vortex of the Nordic seas," Deep-Sea Res., Part I 96, 1–14 (2015).CrossRefGoogle Scholar
  10. 10.
    T. V. Belonenko, D. L. Volkov, V. K. Ozhigin, and Yu. E. Norden, "Water circulation in the Lofoten Basin of the Norwegian Sea," Vestn. S.-Peterb. Univ., Ser. 7: Geol., Geogr., No. 2, 108–121 (2014).Google Scholar
  11. 11.
    P. A. Kuibin and V. L. Okulov, "One-dimensional solutions for flows with helical symmetry," Teplofiz. Aeromekh., No. 4, 311–315 (1996).Google Scholar
  12. 12.
    S. V. Alekseenko, P. A. Kuibin, and V. L. Okulov, Theory of Concentrated Vortices: An Introduction (Springer, Berlin, 2007; Novosibirsk, Inst. Teplofiziki SO RAN, 2003).Google Scholar
  13. 13.
    S. V. Alekseenko, P. A. Kuibin, V. L. Okulov, and S. I. Shtork, "Helical vortices in swirl flow," J. Fluid Mech. 382, 195–243 (1999).CrossRefGoogle Scholar
  14. 14.
    J. Marshall, A. Adcroft, C. Hill, L. Perelman, and C. Heisey, "A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers," J. Geophys. Res. 102 (C3), 5753–5766 (1997). doi 10.1029/96JC02775CrossRefGoogle Scholar
  15. 15.
    A. T. Nguyen, D. Menemenlis, and R. Kwok, "Arctic ice–ocean simulation with optimized model parameters: Approach and assessment," J. Geophys. Res. 116, C04025 (2011). doi 10.1029/2010JC006573CrossRefGoogle Scholar
  16. 16.
    R. A. Locarnini, A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, World Ocean Atlas, Vol. 1: Temperature, Ed. by S. Levitus, NOAA Atlas NESDIS68 (U. S. Government Printing Office, Washington, D.C., 2010).Google Scholar
  17. 17.
    J. I. Antonov, D. Seidov, T. P. Boyer, R. A. Locarnini, A. V. Mishonov, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, World Ocean Atlas, Vol. 2: Salinity, Ed. by S. Levitus, NOAA Atlas NES DIS69 (U.S. Government Printing Office, Washington, D.C., 2010).Google Scholar
  18. 18.
    M. P. Scully, Computation of Helicopter Rotor Wake Geometry and Its Influence on Rotor Harmonic Airloads (Massachusetts Institute of Technology, Cambridge, 1975).Google Scholar
  19. 19.
    X. J. Carton, G. R. Flierl, and L. M. Polvani, "The generation of tripoles from unstable axisymmetric isolated vortex structures," Europhys. Lett., No. 4, 339–344 (1989).CrossRefGoogle Scholar
  20. 20.
    I. Bashmachnikov, F. Neves, T. Calheiros, and X. Carton, "Properties and pathways of Mediterranean water eddies in the Atlantic," Prog. Oceanogr. 137, 149–172 (2015).CrossRefGoogle Scholar
  21. 21.
    J. Pedlosky, Geophysical Fluid Dynamics (Springer, New York, 1979; Mir, Moscow, 1984).CrossRefGoogle Scholar
  22. 22.
    K. F. Bowden, Physical Oceanography of Coastal Waters (Wiley, Chichester, 1983).Google Scholar
  23. 23.
    R. V. Ozmidov, Admixture Diffusion in the Ocean (Gidrometeoizdat, Leningrad, 1986) [in Russian].Google Scholar
  24. 24.
    Ocean Circulation and Climate: Observing and Modelling the Global Ocean, Ed. by G. Siedler, J. Church, and J. Gould (Academic, San Diego, 2001).Google Scholar
  25. 25.
    I. Bashmachnikov, C. Loureiro, and A. Martins, "Topographically induced circulation patterns and mixing over Condor seamount," Deep-Sea Res., Part II 98, 38–51 (2013). doi 10.106/j/dsr2.2013.09.014CrossRefGoogle Scholar
  26. 26.
    M. White, I. Bashmachnikov, J. Arístegui, and A. Martins, "Physical processes and seamount productivity," in Seamounts: Ecology, Conservation and Management, Ed. by. T. J. Pitcher, T. Morato, P. J. B. Hart, (Blackwell, Oxford, 2007), Chap. 4, pp. 65–84.Google Scholar
  27. 27.
    B. B. Nardelli, "Vortex waves and vertical motion in a mesoscale cyclonic eddy," J. Geophys. Res.: Oceans 118, 1–16 (2013). doi 10.1002/jgrc.20345CrossRefGoogle Scholar
  28. 28.
    D. A. Siegel, P. Peterson, D. J. McGillicuddy Jr., S. Maritorena, and N. B. Nelson, "Bio-optical footprints created by mesoscale eddies in the Sargasso Sea," Geophys. Res. Lett. 38, L13608 (2011). doi 10.1029/2011GL047660CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • T. V. Belonenko
    • 1
  • I. L. Bashmachnikov
    • 1
    • 2
  • A. V. Koldunov
    • 1
  • P. A. Kuibin
    • 3
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Nansen International Environmental and Remote Sensing CenterSt. PetersburgRussia
  3. 3.Kutateladze Institute of Thermophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations