Izvestiya, Atmospheric and Oceanic Physics

, Volume 53, Issue 5, pp 564–578 | Cite as

Polar meteorology: Results of Russian research in 2011–2014

Article
  • 42 Downloads

Abstract

A review of the results of Russian polar research performed in 2011–2014 is provided. It is based on material prepared by the Commission on Polar Meteorology of the National Geophysical Committee, Russian Academy of Sciences, for the National Report on Meteorology and Atmospheric Sciences submitted to General Assembly XXVI of the International Union of Geodesy and Geophysics1 [1].

Keywords

Arctic Antarctic climate change International Polar Year warming natural variability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Russian National Report: Meteorology and Atmospheric Sciences 2011–2014, Ed. by A. A. Mokhov and A. A. Krivolutsky (Maks Press, Moscow, 2015).Google Scholar
  2. 2.
    Contribution of Russia to the International Polar Year 2007/08. Meteorological and Geophysical Investigations (Paulsen, Moscow–St. Petersburg, 2011) [in Russian].Google Scholar
  3. 3.
    V. G. Dmitriev, A. I. Danilov, A. V. Klepikov, V. M. Kotlyakov, E. I. Sarukhanyan, and N. A. Zaitseva, “On the publication of scientific series Contribution of Russia to the International Polar Year 2007/08,” Arkt.: Ekol. Ekon., No. 3, 54–61 (2012).Google Scholar
  4. 4.
    G. V. Alekseev, “Introduction: on studies in the field of “Meteorological and Geophysical Investigations”,” in Contribution of Russia to the International Polar Year 2007/08. Meteorological and Geophysical Investigations (Paulsen, Moscow–St. Petersburg, 2011), pp. 3–5 [in Russian].Google Scholar
  5. 5.
    G. V. Alekseev, N. E. Ivanov, A. V. Pnyushkov, and N. E. Kharlanenkova, “Climate changes in the marine Arctic in early 21st century,” in Contribution of Russia to the International Polar Year 2007/08. Meteorological and Geophysical Investigations (Paulsen, Moscow–St. Petersburg, 2011), pp. 6–28 [in Russian].Google Scholar
  6. 6.
    A. P. Makshtas, I. I. Bol’shakova, R. M. Gunn, O. L. Zhukova, N. E. Ivanov, and S. V. Shutilin, “The climate of the region of the Tiksi hydrometeorological observatory,” in Contribution of Russia to the International Polar Year 2007/08. Meteorological and Geophysical Investigations (Paulsen, Moscow–St. Petersburg, 2011), pp. 49–74 [in Russian].Google Scholar
  7. 7.
    P. N. Svyashchennikov, B. V. Ivanov, P. V. Bocharov, D. M. Zhuravskii, V. F. Timachev, A. V. Semenov, T. A. Soldatova, and A. R. Antsiferova, “Study of radiative and climatic factors and the meteorological regime of the Spitsbergen Archipelago,” in Contribution of Russia to the International Polar Year 2007/08. Meteorological and Geophysical Investigations (Paulsen, Moscow–St. Petersburg, 2011), pp. 75–82 [in Russian].Google Scholar
  8. 8.
    I. I. Mokhov, V. A. Semenov, A. V. Eliseev, V. Ch. Khon, M. M. Arzhanov, A. A. Karpenko, and S. N. Denisov, “Climate changes and their consequences in high latitudes: Diagnostics and simulation,” in Contribution of Russia to the International Polar Year 2007/08. Meteorological and Geophysical Investigations (Paulsen, Moscow–St. Petersburg, 2011), pp. 96–130 [in Russian].Google Scholar
  9. 9.
    V. A. Romantsov, L. Yu. Vasil’ev, and D. A. Kozelov, “The state and development of the Arctic observation network at IPY 2007/08,” in Contribution of Russia to the International Polar Year 2007/08. Meteorological and Geophysical Investigations (Paulsen, Moscow–St. Petersburg, 2011), pp. 150–157 [in Russian].Google Scholar
  10. 10.
    A. A. Vinogradova, “Trends of changes in sources and sinks of anthropogenic heavy metals in the Arctic atmosphere in late 20th and early 21st centuries,” in Contribution of Russia to the International Polar Year 2007/08. Meteorological and Geophysical Investigations (Paulsen, Moscow–St. Petersburg, 2011), pp. 215–234 [in Russian].Google Scholar
  11. 11.
    V. V. Pol’kin, M. V. Panchenko, L. P. Golobokova, U. G. Filippova, T. V. Khodzher, A. P. Lisitsyn, and V. P. Shevchenko, “Near-water aerosol in the White and Kara seas in August and September 2007,” in Contribution of Russia to the International Polar Year 2007/08. Meteorological and Geophysical Investigations (Paulsen, Moscow–St. Petersburg, 2011), pp. 199–214 [in Russian].Google Scholar
  12. 12.
    G. A. Zherebtsov, V. A. Kovalenko, S. I. Molodykh, and O. A. Rubtsova, “Effect of heliogeophysical disturbances in the polar troposphere on the Earth’s climate system,” in Contribution of Russia to the International Polar Year 2007/08. Meteorological and Geophysical Investigations (Paulsen, Moscow–St. Petersburg, 2011), pp. 251–268 [in Russian].Google Scholar
  13. 13.
    I. A. Repina, A. Yu. Artamonov, A. S. Smirnov, and D. G. Chechin, “Study of the ocean–atmosphere interaction in polar regions in the framework of the International Polar Year,” in Contribution of Russia to the International Polar Year 2007/08. Meteorological and Geophysical Investigations (Paulsen, Moscow–St. Petersburg, 2011), pp. 236–250 [in Russian].Google Scholar
  14. 14.
    V. A. Semenov, I. I. Mokhov, and M. Latif, “Influence of the ocean surface temperature and sea ice concentration on regional climate changes in Eurasia in recent decades,” Izv., Atmos. Ocean. Phys. 48 (4), 355–372 (2012).CrossRefGoogle Scholar
  15. 15.
    V. A. Semenov, “Role of sea ice in formation of wintertime Arctic temperature anomalies,” Izv., Atmos. Ocean. Phys. 50 (4), 343–349 (2014).CrossRefGoogle Scholar
  16. 16.
    V. A. Semenov, I. I. Mokhov, and A. B. Polonskii, “Modeling the impact of natural long-term variability in the North Atlantic on the formation of climate anomaly in the Northern Hemisphere,” Morsk. Gidrofiz. Zh., No. 4, 14–27 (2014).Google Scholar
  17. 17.
    V. V. Zuev, V. A. Semenov, E. A. Shelekhova, S. K. Gulev, and K. P. Koltermann, “Evaluation of the impact of oceanic heat transport in the North Atlantic and Barents Sea on the northern hemispheric climate,” Dokl. Earth Sci. 445 (2), 1006–1010 (2012).CrossRefGoogle Scholar
  18. 18.
    V. A. Semenov, E. A. Shelekhova, I. I. Mokhov, V. V. Zuev, and K. P. Koltermann, “Influence of the Atlantic multidecadal oscillation on settling anomalous climate regimes in Northern Eurasia based on model simulation,” Dokl. Earth Sci. 459 (2), 1619–1622 (2014).CrossRefGoogle Scholar
  19. 19.
    V. A. Semenov, E. A. Shelekhova, I. I. Mokhov, V. V. Zuev, and K. P. Koltermann, “Role of the Atlantic Multidecadal Oscillation in formation of seasonal air temperature anomalies in the Northern Hemisphere according to model calculations,” Atmos. Oceanic Opt. 27 (3), 253–261 (2014).CrossRefGoogle Scholar
  20. 20.
    V. A. Semenov, “Meteorology: Arctic warming favours extremes,” Nature Clim. Change 2 (5), 315–316 (2012).CrossRefGoogle Scholar
  21. 21.
    G. V. Alekseev, “The Arctic measurement of global warming,” Led Sneg 54 (2), 53–68 (2014).Google Scholar
  22. 22.
    M. S. Olsen, T. V. Callaghan, J. D. Reist, L. O. Reiersen, D. Dahl-Jensen, M. A. Granskog, B. Goodison, G. K. Hovelsrud, M. Johansson, R. Kallenborn, J. Key, A. Klepikov, W. Meier, J. E. Overland, T.D. Prowse, M. Sharp, W. F. Vincent, J. Walsh, “The changing Arctic cryosphere and likely consequences: An overview,” Ambio 40, 111–118 (2011).CrossRefGoogle Scholar
  23. 23.
    Yu. S. Tsaturov and A. V. Klepikov, “Present-day changing of Arctic climate: results of the new assessment report of the Arctic Council,” Arkt.: Ekol. Ekon., No. 4, 76–81 (2012).Google Scholar
  24. 24.
    G. V. Alekseev, A. I. Danilov, and A. V. Klepikov, “On the issue of prediction and assessment of the consequences of global climate changes in the Arctic zone of the Russian Federation under the influence of natural and anthropogenic factors in medium-and long-term prospects,” Ross. Polyarn. Issled., No. 14, 26–28 (2013).Google Scholar
  25. 25.
    A. I. Danilov, G. V. Alekseev and A. V. Klepikov, “Climate change consequences for marine activity in the Arctic,” Led Sneg 54 (3), 91–99 (2014).Google Scholar
  26. 26.
    D. V. Kovalevskiy, G. V. Alekseev, and S. I. Kuz’mina, “Changes of Arctic climate and their sequences for fishery and sea transport,” in Proceedings of the International Conference (Tyumen, 2012), Vol. 1, pp. 167–170 (2012).Google Scholar
  27. 27.
    G. G. Matishov and S. L. Dzhenyuk, “Marine economic activities in the Russian Arctic under current climate changes,” Arkt.: Ekol. Ekon., No. 1, pp. 26–37 (2012).Google Scholar
  28. 28.
    A. A. Makosko, “Hydrometeorological support of shipping along Northern Sea Route traces,” Arkt.: Ekol. Ekon., No. 3, 40–49 (2013).Google Scholar
  29. 29.
    O. A. Aldukhov and I. V. Chernykh, Methods of Analysis and Interpretation of Atmospheric Radiosonde Data, Vol. 1: Quality Control of Data Processing; Vol. 2: Reconstructed Cloud Layers (VNIIGMI-MTsD, Obninsk, 2013) [in Russian].Google Scholar
  30. 30.
    B. S. Yurchak, “An assessment of radiosonde launch conditions affected by the surface wind,” Russ. Meteorol. Hydrol., 38 (3), 159–167 (2013).CrossRefGoogle Scholar
  31. 31.
    B. S. Yurchak, “A technique of radiosonde launch under the surface wind of high speed,” Russ. Meteorol. Hydrol. 39 (1), 38–46 (2014).CrossRefGoogle Scholar
  32. 32.
    M.M. Arzhanov, I. I. Mokhov, “Temperature trends in the permafrost of the Northern Hemisphere: Comparison of model calculations with observations,” Dokl. Earth Sci. 449 (1), 319–322 (2013).CrossRefGoogle Scholar
  33. 33.
    M. M. Arzhanov, A. V. Eliseev, and I. I. Mokhov, “Impact of climate changes over the extratropical land on permafrost dynamics under RCP scenarios in the 21st century as simulated by the IAP RAS climate model,” Russ. Meteorol. Hydrol. 38 (7), 456–464 (2013).CrossRefGoogle Scholar
  34. 34.
    M. M. Arzhanov and I. I. Mokhov, “Model assessments of organic carbon amounts released from longterm permafrost under scenarios of global warming in the 21st century,” Dokl. Earth Sci. 455 (3), 346–349 (2014).CrossRefGoogle Scholar
  35. 35.
    S. N. Denisov, M. M. Arzhanov, A. V. Eliseev, and I. I. Mokhov, “Assessment of the response of subaqueous methane hydrate deposits to possible climate change in the twenty-first century,” Dokl. Earth Sci. 441 (2), 1706–1709 (2011).CrossRefGoogle Scholar
  36. 36.
    A. V. Eliseev, P. F. Demchenko, M. M. Arzhanov, and I. I. Mokhov, “Hysteresis of the surface permafrost area dependence on the global temperature,” Dokl. Earth Sci. 444 (4), 725–728 (2012).CrossRefGoogle Scholar
  37. 37.
    A. V. Eliseev, P. F. Demchenko, M. M. Arzhanov, and I. I. Mokhov, “Transient hysteresis of near-surface permafrost response to external forcing,” Clim. Dyn. 42 (5–6), 1203–1215 (2014).CrossRefGoogle Scholar
  38. 38.
    M. M. Arzhanov, A. V. Eliseev, and I. I. Mokhov, “A global climate model based, Bayesian climate projection for northern extra-tropical land areas,” Glob. Planet. Change 86–87, 57–65 (2012).CrossRefGoogle Scholar
  39. 39.
    V. M. Stepanenko, E. E. Machul’skaya, M. V. Glagolev, and V. N. Lykosov, “Numerical modeling of methane emissions from lakes in the permafrost zone,” Izv., Atmos. Ocean. Phys. 47 (2), 252–264 (2011).CrossRefGoogle Scholar
  40. 40.
    L. L. Golubyatnikov and V. S. Kazantsev, “Contribution of tundra lakes in western Siberia to the atmospheric methane budget,” Izv., Atmos. Ocean. Phys. 49 (4), 395–403 (2013).CrossRefGoogle Scholar
  41. 41.
    A. S. Ginzburg, A. A. Vinogradova, and E. I. Fedorova, “Some features of seasonal variations in the methane content in the atmosphere over Northern Eurasia,” Izv., Atmos. Ocean. Phys. 47 (1), 45–58 (2011).CrossRefGoogle Scholar
  42. 42.
    O. A. Anisimov, I. I. Borzenkova, S. A. Lavrov, and Yu. G. Strel’chenko, “Current dynamics of underwater permafrost and methane emission on the shelf of East Arctic seas,” Led Sneg 52 (2), 97–105 (2012).Google Scholar
  43. 43.
    O. A. Anisimov, Yu. G. Zaboikina, V. A. Kokorev, and L. N. Yurganov, “Possible causes of methane emission on the shelf of East Arctic seas,” Led Sneg 54 (2), 69–81 (2014).Google Scholar
  44. 44.
    A. Portnov, J. Mienert, and P. Serov, “Modeling the evolution of climate-sensitive Arctic subsea permafrost in regions of extensive gas expulsion at the West Yamal shelf,” J. Geophys. Res.: Biogeosci. 119 (11), 2082–2094 (2014).CrossRefGoogle Scholar
  45. 45.
    A. Portnov, A. J. Smith, J. Mienert, G. Cherkashov, P. Rekant, P. Semenov, P. Serov, and B. Vanshtein, “Offshore permafrost decay and massive seabed methane escape in water depths >20 m at the South Kara Sea shelf,” Geophys. Res. Lett. 119 (11), 3962–3967 (2013).CrossRefGoogle Scholar
  46. 46.
    L. I. Lobkovskii and S. L. Nikiforov, “Abnormal methane emission on the Arctic shelf: Problems of climate warming and safe exploration of Arctic resources,” Arkt. Vedomosti, No. 3, 94–98 (2013).Google Scholar
  47. 47.
    L. I. Lobkovskii, S. L. Nikiforov, N. E. Shakhova, I. P. Semiletov, N. V. Libina, R. A. Anan’ev, and N. N. Dmitrevskii, “Mechanisms responsible for degradation of submarine permafrost on the Eastern Arctic shelf of Russia,” Dokl. Earth Sci. 449 (1), 280–283 (2013).CrossRefGoogle Scholar
  48. 48.
    V. I. Sergienko, L. I. Lobkovskii, I. P. Semiletov, et al., “The degradation of submarine permafrost and the destruction of hydrates on the shelf of East Arctic seas as a potential cause of the “methane catastrophe”: Some results of integrated studies in 2011,” Dokl. Earth Sci. 446 (1), 1132–1136 (2012).CrossRefGoogle Scholar
  49. 49.
    N. Shakhova, I. Semiletov, I. Leifer, et al., “Ebullition and storm-induced methane release from the East Siberian Arctic shelf,” Nature Geosci. 7 (1), 64–70 (2014).CrossRefGoogle Scholar
  50. 50.
    V. V. Malakhova and E. N. Golubeva, “A possible mechanism of methane emission on the shelf of East Arctic seas,” Opt. Atmos. Okeana 26 (6), 452–458 (2013).Google Scholar
  51. 51.
    V. V. Malakhova, “Mathematical modeling of the submarine permafrost long-term dynamics and gas hydrate stability zone in the Siberian Arctic shelf,” Bull. Novosib. Comput. Center, Ser.: Numer. Modeling Atmos., Ocean, Environ. Stud., No. 14, 41–54 (2014).Google Scholar
  52. 52.
    I. I. Pipko, S. P. Pugach, I. P. Semiletov, and A. N. Salyuk, “Carbonate characteristics of waters of the Arctic ocean continental slope,” Dokl. Earth Sci. 438 (2), 858–863 (2011).CrossRefGoogle Scholar
  53. 53.
    I. I. Pipko, I. P. Semiletov, S. P. Pugach, I. Wahlstrom, and L. G. Anderson, “Interannual variability of air-sea CO2 fluxes and carbon system in the East Siberian Sea,” Biogeosciences 8 (7), 1987–2007 (2011).CrossRefGoogle Scholar
  54. 54.
    L. G. Anderson, G. Björk, S. Jutterström, I. Pipko, N. Shakhova, I. Semiletov, and I. Wáhlström, “East Siberian Sea, an Arctic region of very high biogeochemical activity,” Biogeosciences 8, 1865–1879 (2011).CrossRefGoogle Scholar
  55. 55.
    I. P. Semiletov, N. E. Shakhova, V. I. Sergienko, I. I. Pipko, and O. V. Dudarev, “On carbon transport and fate in the East Siberian Arctic land–shelf–atmosphere system,” Environ. Res. Lett. 7 (1), 015201 (2012).CrossRefGoogle Scholar
  56. 56.
    N. Shakhova and I. Semiletov, “Trace gas emissions from sub-sea permafrost,” in Climate Change and the Cryosphere: Snow, Water, Ice and Permafrost in the Arctic (SWIPA): An Arctic Council ‘Cryosphere Project’ in Cooperation with IASC, CliC and IPY, (Arctic Monitoring and Assessment Program, 2012), pp. 97–104.Google Scholar
  57. 57.
    I. P. Semiletov, N. E. Shakhova, I. I. Pipko, S. P. Pugach, A. N. Charkin, O. V. Dudarev, D. A. Kosmach, and S. Nishino, “Space–time dynamics of carbon and environmental parameters related to carbon dioxide emissions in the Buor-Khaya Bay and adjacent part of the Laptev Sea,” Biogeosciences 10 (12), 5977–5996 (2013).CrossRefGoogle Scholar
  58. 58.
    A. P. Nedashkovskii, “Release and absorption of CO2 during sea-ice formation and melting in the high-latitude Arctic,” Led Sneg 52 (1), 75–84 (2012).Google Scholar
  59. 59.
    E. D. Nadezhina, A. V. Sternzat, R. S. Bortkovskii, A. A. Pikaleva, B. N. Egorov, and I. M. Shkol’nik, “Model estimates for oxygen flows through the surface of Arctic seas,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 572, 7–29 (2014).Google Scholar
  60. 60.
    A. A. Kiselev and A. I. Reshetnikov, “Methane in the Russian Arctic: Measurements and simulation,” Probl. Arkt. Antarkt., No. 2, 5–15 (2013).Google Scholar
  61. 61.
    A. I. Reshetnikov and V. M. Ivakhov, “Results of continuous observations of methane concentrations at Tiksi station (comparison with data from ship observations on the Laptev Sea shelf),” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 566, 257–269 (2012).Google Scholar
  62. 62.
    A. I. Reshetnikov and A. P. Makshtas, “The Arctic hydrometeorological observatory Tiksi,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova. 567, 267–283 (2012).Google Scholar
  63. 63.
    A. I. Reshetnikov, A. V. Zinchenko, N. N. Paramonova, V. I. Privalov, V. M. Ivakhov, and K. V. Kazakova, “Results of monitoring of key greenhouse gases at Arctic stations of Rosgidromet,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova. 567, 223–240 (2012).Google Scholar
  64. 64.
    V. Malkova, A. V. Pavlov, and Yu. B. Skachkov, “Assessment of permafrost stability under current climate changes,” Krios. Zemli 15 (4), 33–36 (2011).Google Scholar
  65. 65.
    N. I. Osokin, A. V. Sosnovskii, P. R. Nakalov, R. A. Chernov, and I. I. Lavrent’ev, “Climate changes and possible dynamics of permafrost soils in the Spitsbergen Archipelago,” Led Sneg 52 (2), 115–120 (2012).Google Scholar
  66. 66.
    N. G. Platonov, I. N. Mordvintsev, and I. V. Alpatskii, “Estimation of the correlation between the sub-Arctic vegetation state and climatic parameters,” Issled. Zemli Kosmosa, No. 5, 53–63 (2012).Google Scholar
  67. 67.
    A. N. Nikolaev and Yu. B. Skachkov, “Influence of snow cover and temperature regime of permafrost soils on radial growth of trees in central Yakutia,” Zh. Sib. Fed. Univ.: Biol., No. 5, 43–51 (2012).Google Scholar
  68. 68.
    Yu. B. Skachkov, “Trends in the change of extreme air temperatures in Yakutsk,” Nauka Obraz., No. 2, 39–41 (2012).Google Scholar
  69. 69.
    E. I. Lutsenko and V. E. Lagun, Polar Mesoscale Cyclonic Vortices in the Arctic Atmosphere (AANII, St. Petersburg, 2011). http://www.aari.ru/projects/mesocyclone/mez_arc.pdf.Google Scholar
  70. 70.
    E. I. Lutsenko and V. E. Lagun, “Polar mesoscale cyclones in the atmosphere over the Barents and Kara seas,” Probl. Arkt. Antarkt., No. 2, 68–84 (2013).Google Scholar
  71. 71.
    L. P. Bobylev, E. V. Zabolotskikh, L. M. Mitnik, and M. L. Mitnik, “Arctic polar low detection and monitoring using atmospheric water vapor retrievals from satellite passive microwave data,” IEEE Trans. Geosci. Remote Sens. 49 (9), 3302–3310 (2011).CrossRefGoogle Scholar
  72. 72.
    E. V. Zabolotskikh, L. M. Mitnik, and B. Chapron, “New approach for severe marine weather study using satellite passive microwave sensing,” Geophys. Res. Lett. 40 (13), 3347–3350 (2013).CrossRefGoogle Scholar
  73. 73.
    E. V. Zabolotskikh, L. M. Mitnik, L. P. Bobylev, and B. Chapron, “Satellite passive and active microwave methods for Arctic cyclone studies,” in Typhoon Impacts and Crisis Management, Ed. by D. L. Tang and G. Sui (Berlin–Heidelberg, 2014), pp. 81–92.Google Scholar
  74. 74.
    I. A. Gurvich and M. K. Pichugin, “Study of the comparative characteristics of typical mesoscale cyclones over Far-Eastern seas on the basis of satellite multisensor sounding,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 10 (1), 51–59 (2013).Google Scholar
  75. 75.
    I. M. Shkolnik and S. V. Efimov, “Cyclonic activity in high latitudes as simulated by a regional atmospheric climate model: Added value and uncertainties,” Environ. Res. Lett. 8 (4), 045007 (2013).CrossRefGoogle Scholar
  76. 76.
    M. G. Akperov and I. I. Mokhov, “Estimates of the sensitivity of cyclonic activity in the troposphere of extratropical latitudes to changes in the temperature regime,” Izv., Atmos. Ocean. Phys. 49 (2), 113–120 (2013).CrossRefGoogle Scholar
  77. 77.
    M. Akperov, I. I. Mokhov, A. Rinke, et al., “Cyclones and their possible changes in the Arctic by the end of the twenty first century from regional climate model simulations,” Theor. Appl. Climatol. 122 (1), 85–96 (2015).CrossRefGoogle Scholar
  78. 78.
    M. V. Kurgansky, A. V. Chernokulsky, and I. I. Mokhov, “The tornado over Khanty-Mansiysk: An exception or a symptom?,” Russ. Meteorol. Hydrol. 38 (8), 539–546 (2013).CrossRefGoogle Scholar
  79. 79.
    V. I. Kozlov, V. A. Mullayarov, Yu. M. Grigor’ev, and L. D. Tarabukina, “Parameters of thunderstorm activity and lightning discharges in central Yakutia from 2009 to 2012,” Izv., Atmos. Ocean. Phys. 50 (3), 323–329 (2014).CrossRefGoogle Scholar
  80. 80.
    I. I. Mokhov, V. A. Semenov, V. Ch. Khon, and F. A. Pogarsky, “Climate change trends in high latitudes of the Northern Hemisphere: Diagnostics and simulation,” Led Sneg 53 (2), 53–62 (2013).Google Scholar
  81. 81.
    V. Ch. Khon, I. I. Mokhov, and F. A. Pogarsky, “Estimating changes of wind-wave activity in the Arctic Ocean in the 21st century using the regional climate model,” Dokl. Earth Sci. 452 (2), 1027–1029 (2013).CrossRefGoogle Scholar
  82. 82.
    V. Khon, I. I. Mokhov, F. Pogarskiy, A. Babanin, K. Dethloff, A. Rinke, and H. Matthes, “Wave heights in the 21st century Arctic Ocean simulated with a regional climate model,” Geophys. Res. Lett. 41 (8), 2956–2961 (2014).CrossRefGoogle Scholar
  83. 83.
    V. P. Meleshko and A. V. Baidin, “Reaktsiya klimata atmosfery na sokrashchenie ploshchadi l’da v Arktike i na drugie vneshnie vozdeistviya za poslednie desyatiletiya,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 568, 80–117 (2013).Google Scholar
  84. 84.
    A. V. Baidin and V. P. Meleshko, “Response of the atmosphere at high and middle latitudes to the reduction of sea ice area and the rise of sea surface temperature,” Russ. Meteorol. Hydrol. 39 (6), 361–370 (2014).CrossRefGoogle Scholar
  85. 85.
    I. L. Karol’, V. P. Meleshko, A. V. Baidin, and A. A. Kiselev, “Radiative and thermodynamic seasonal factors of climate warming in the Arctic,” Probl. Arkt. Antarkt., No. 3, 5–12 (2014).Google Scholar
  86. 86.
    I. L. Karol’ and A. I. Reshetnikov, “Greenhouse gases, aerosols, and climate,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 573, 5–38 (2014).Google Scholar
  87. 87.
    A. P. Nagurnyi and A. P. Makshtas, “Measurements of methane emissions in the near-ice atmospheric layer at the Severnyi Polyus-36 ice drifting station (2009),” Probl. Arkt. Antarkt., No. 1, 22–28 (2011).Google Scholar
  88. 88.
    A. P. Nagurnyi, A. P. Makshtas, and V. T. Sokolov, “Results methane concentration measurements in the near-ice atmospheric layer at the SP-36 ice drifting station SP-39 (2011–2012),” Probl. Arkt. Antarkt., No. 4, 5–13 (2013).Google Scholar
  89. 89.
    G. V. Alekseev, “Study of the ocean–atmosphere interaction in the North Polar region based on programs of large-scale field experiments NEV, Poleks-Sever, and Razrezy,” Probl. Arkt. Antarkt., No. 1, 41–52 (2014).Google Scholar
  90. 90.
    G. V. Alekseev, “Dynamic amplification of global warming,” in Proceedings of the International Conference Commemorating Academician A. M. Obukhov (GEOS, Moscow, 2014), pp. 290–306 [in Russian].Google Scholar
  91. 91.
    V. F. Radionov, E. I. Aleksandrov, N. N. Bryazgin, and A. A. Dement’ev, “Changes in temperature, precipitation, and snow cover in the region of Arctic seas from 1981 to 2010,” Led Sneg 53 (1), 61–68 (2013).Google Scholar
  92. 92.
    A. V. Chernokulsky and I. I. Mokhov, “Climatology of total cloudiness in the Arctic: An intercomparison of observations and reanalyses,” Adv. Meteorol. 2012, id 542093 (2012).Google Scholar
  93. 93.
    S. A. Sorokina and I. N. Esau, “Meridional energy flux in the Arctic from data of the radiosonde archive IGRA,” Izv., Atmos. Ocean. Phys. 47 (5), 572–583 (2011).CrossRefGoogle Scholar
  94. 94.
    A. P. Nagurnyi, “Variations of characteristics of the mean atmospheric energy level in the area of the Franz Josef Land archipelago in 1935–2012},” Russ. Meteorol. Hydrol.} 39 (1), 11–1Google Scholar
  95. 95.
    V. V. Popova and I. A. Polyakova, “Change in the time of stable snow cover destruction in north Eurasia in 1936–2008: Impact of global warming and the role of large-scale atmospheric circulations,” Led Sneg 53 (2), 59–70 (2013).Google Scholar
  96. 96.
    V. V. Popova, A. V. Shiryaeva, and P. A. Morozova, “Snow cover setting-up dates in the north of Eurasia: Relations and feedback to the macro-scale atmospheric circulation,” Led Sneg 54 (3), 39–49 (2014).Google Scholar
  97. 97.
    A. B. Shmakin, N. I. Osokin, A. V. Sosnovskii, E. P. Zazovskaya, and A. V. Borzenkova, “Influence of snow cover on soil freezing and thawing in the West Spitsbergen,” Led Sneg 53 (4), 52–59 (2013).Google Scholar
  98. 98.
    N. I. Osokin and A. V. Sosnovskii, “Spatial and temporal variability of depth and density of the snow cover in Russia,” Led Sneg 54 (4), 72–80 (2014).Google Scholar
  99. 99.
    N. I. Osokin and A. V. Sosnovskii, “Field investigation of efficient thermal conductivity of snow cover on Spitsbergen,” Led Sneg 54 (3), 50–58 (2014).Google Scholar
  100. 100.
    B. V. Ivanov, P. N. Sviashchennikov, D. M. Zhuravskii, A. K. Pavlov, and E. J. Forland, “Metadata for a long-term climate series from the Russian meteorological station Pyramiden (1948–1957) at Svalbard,” Czech Polar Rep., No. 4, 42–47 (2014).Google Scholar
  101. 101.
    B. V. Ivanov, A. K. Pavlov, O. M. Andreev, D. M. Zhuravskii, and P. N. Svyashchennikov, “Study of the snow–ice cover in the Green Fjord (Spitsbergen Archipelago): Historical data, field investigations, and modeling,” Probl. Arkt. Antarkt., No. 2, 43–54 (2012).Google Scholar
  102. 102.
    B. V. Ivanov, P. N. Svyashchennikov, and I. B. Govorina, “Influence of industrial environment pollution near the Barentsburg village (Spitsbergen Archipelago) on radiative properties of snow–ice cover and the atmosphere,” Uch. Zap. RGGMU, No. 31, 45–50 (2013).Google Scholar
  103. 103.
    V. S. Sokratov and A. B. Shmakin, “Numerical modeling of snow cover on Hooker Island (Franz Josef Land Archipelago),” Led Sneg 53 (3), 55–62 (2013).Google Scholar
  104. 104.
    A. N. Krenke, E. A. Cherenkova, and M. M. Chernavskaya, “Snowpack stability on the territory of Russia in the context of climate change,” Led Sneg 52 (1), 29–37 (2012).Google Scholar
  105. 105.
    N. K. Kononova, “The influence of atmospheric circulation on the formation of snow cover in northeastern Siberia,” Led Sneg 52 (1), 38–53 (2012).Google Scholar
  106. 106.
    V. N. Golubev, “Nucleation and growth of ice crystals in the atmosphere},” Led Sneg} 53 (1), 53–6Google Scholar
  107. 107.
    Yu. E. Belikov and S. Sh. Nikolaishvili, “Possible mechanism of ozone depletion on ice crystals in the polar stratosphere,” Russ. Meteorol. Hydrol. 37 (10), 666–680 (2012).CrossRefGoogle Scholar
  108. 108.
    G. N. Shur, V. V. Volkov, N. M. Sitnikov, A. E. Ulanovskii, and V. I. Sitnikova, “Studying the mesoscale structure of inhomogeneities within the high-latitude stratosphere during the evolution of the circumpolar vortex on the basis of aircraft measurements,” Izv., Atmos. Ocean. Phys. 50 (2), 171–178 (2014).CrossRefGoogle Scholar
  109. 109.
    O. M. Andreev, B. V. Ivanov, and A. M. Bezgreshnov, “Solar radiation redistribution peculiarities in ice hummocks of the Arctic basin,” Russ. Meteorol. Hydrol. 36 (1), 40–44 (2011).CrossRefGoogle Scholar
  110. 110.
    B. V. Ivanov and O. M. Andreev, “On the problem of determination of hummocky formation albedo,” Russ. Meteorol. Hydrol. 36 (6), 409–412 (2011).CrossRefGoogle Scholar
  111. 111.
    B. V. Ivanov and S. P. Polyakov, “Some results from the study of hummock reflectivity in the central part of the Arctic basin,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 569, 239–248 (2013).Google Scholar
  112. 112.
    B. V. Ivanov and V. F. Timachev, “Heat balance of the snow surface of sea ice in the Laptev Sea in spring 2009,” Probl. Arkt. Antarkt., No. 4, 99–104 (2012).Google Scholar
  113. 113.
    B. V. Ivanov, V. F. Timachev, P. N. Svyashchennikov, A. P. Makshtas, V. M. Bednenko, and A. K. Pavlov, “Energy and mass exchange between the ocean and atmosphere in the area of winter polynya north of the Spitsbergen Archipelago,” Probl. Arkt. Antarkt., No. 2, 111–117 (2013).Google Scholar
  114. 114.
    I. A. Repina and D. G. Chechin, “Influence of polynyas and ice leads in the Arctic on the structure of the atmospheric boundary layer and regional climate,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 9 (4), 162–170 (2012).Google Scholar
  115. 115.
    D. G. Chechin, C. Lüpkes, I. A. Repina, and V. M. Gryanik, “Idealized dry quasi-2D mesoscale simulations of cold-air outbreaks over the marginal sea-ice zone with fine and coarse resolution,” J. Geophys. Res. 118 (16), 8787–8813 (2013).Google Scholar
  116. 116.
    V. M. Stepanenko, A. V. Debol’skii, M. I. Varentsov, D. E. Kuznetsov, and M. I. Zimin, “Study of atmospheric convection over an Arctic polynya on the basis of supercomputer calculations and high-resolution satellite data,” Zemlya iz Kosmosa—Naibolee Effektivnye Resheniya, No. 10, 52–55 (2011).Google Scholar
  117. 117.
    P. Ya. Groisman, E. G. Bogdanova, V. A. Alekseev, et al., “Influence of snowfall measurement error on the amount of atmospheric precipitation and their trends over northern Eurasia,” Led Sneg 54 (2), 29–43 (2014).Google Scholar
  118. 118.
    G. V. Gruza and E. Ya. Ran’kova, “Dynamic normals of surface air temperature,” Russ. Meteorol. Hydrol. 37 (11–12), 717–727 (2012).CrossRefGoogle Scholar
  119. 119.
    E. K. Semenov, N. N. Sokolikhina, and K. O. Tudrii, “The warm winter in the Russian Arctic and anomalous cold in Europe,” Russ. Meteorol. Hydrol. 38 (9), 614–621 (2013).CrossRefGoogle Scholar
  120. 120.
    V. I. Bychkova and K. G. Rubinshtein, “Preliminary results of testing the snowstorm short-range forecast algorithm,” Russ. Meteorol. Hydrol. 38 (6), 387–395 (2013).CrossRefGoogle Scholar
  121. 121.
    A. I. Danilov, V. E. Lagun, and A. V. Klepikov “Current changes in the climate of Antarctica,” in Contribution of Russia to the International Polar Year 2007/08. Meteorological and Geophysical Investigations (Paulsen, Moscow–St. Petersburg, 2011), pp. 26–48 [in Russian].Google Scholar
  122. 122.
    V. F. Radionov, E. N. Rusina, S. M. Sakerin, E. E. Sibir, and A. V. Smirnov, “Radiation balance components and aerosol-optical parameters of the atmosphere in Antarctica during the IPY against the background of their long-term variability,” in Contribution of Russia to the International Polar Year 2007/08. Meteorological and Geophysical Investigations (Paulsen, Moscow–St. Petersburg, 2011), pp. 158–169 [in Russian].Google Scholar
  123. 123.
    F. V. Kashin, N. N. Paramonova, and V. I. Privalov, “Results of the monitoring of carbon dioxide and methane concentrations in the air of Antarctica at Novolazarevskaya station from 2007 to 2009,” in Contribution of Russia to the International Polar Year 2007/08. Meteorological and Geophysical Investigations (Paulsen, Moscow–St. Petersburg, 2011), pp. 170–177 [in Russian].Google Scholar
  124. 124.
    E. E. Sibir and V. F. Radionov, “Total ozone content in Antarctica during the International Polar Year 2007/2008,” in Contribution of Russia to the International Polar Year 2007/08. Meteorological and Geophysical Investigations (Paulsen, Moscow–St. Petersburg, 2011), pp. 178–186 [in Russian].Google Scholar
  125. 125.
    I. P. Gabis and O. A. Troshichev, “Study of the variability of ozone circulation and content in the South Pole region taking into account the variations in solar UV radiation,” in Contribution of Russia to the International Polar Year 2007/08. Meteorological and Geophysical Investigations (Paulsen, Moscow–St. Petersburg, 2011), pp. 306–330 [in Russian].Google Scholar
  126. 126.
    V. M. Kotlyakov, “On the history of the international project of deep ice-core drilling at Vostok station,” Led Sneg 52 (4), 5–8 (2012).Google Scholar
  127. 127.
    N. I. Barkov, “The first well drilled at Vostok station,” Led Sneg 52 (4), 9–12 (2012).Google Scholar
  128. 128.
    M. D. Ananicheva, A. N. Krenke, A. E. Semenov, and D. V. Turkov, “Dependence of snow accumulation in Antarctica on sea-ice propagation area,” Led Sneg 51 (4), 47–56 (2011).Google Scholar
  129. 129.
    A. A. Ekaikin, V. Ya. Lipenkov, and Yu. A. Shibaev, “Spatial distribution of the snow accumulation rate along the ice flow lines between ridge B and Lake Vostok,” Led Sneg 52 (4), 122–128 (2012).Google Scholar
  130. 130.
    T. V. Khodzher, L. P. Golobokova, E. Yu. Osipov, and N. A. Onishchuk, “Volcanic events record over the last 900 years from snow and firn sequence in Vostok station area,” Led Sneg 52 (4), 115–121 (2012).Google Scholar
  131. 131.
    L. P. Golobokova, T. V. Khodzher, Yu. A. Shibaev, V. Ya. Lipenkov, and J.-R. Petit, “Chemical composition change of subsurface snow in East Antarctica with distance from the coast,” Led Sneg 52 (4), 129–137 (2012).Google Scholar
  132. 132.
    E. Lefebvre, L. Arnaud, A. A. Ekaikin, V. Ya. Lipenkov, G. Picard, and J.-R. Petit, “Snow temperature measurements at Vostok station from an autonomous recording system (TAUTO): Preliminary results from the first year operation,” Led Sneg 52 (4), 138–145 (2012).Google Scholar
  133. 133.
    E. S. Bulat, V. A. Tsel’movich, J.-R. Petit, I. M. Gindilis, and S. A. Bulat, “Snow cover of the Central Antarctica (Vostok station) as an ideal natural tablet for cosmic dust collection: Preliminary results on the identification of micrometeorites of carbonaceous chondrite type,” Led Sneg 52 (4), 146–152 (2012).Google Scholar
  134. 134.
    S. V. Popov and L. Eberlein, “Investigation of snowfirn thickness and ground in the East Antarctica by means of geophysical radar},” Led Sneg} 54} (4}), 95–Google Scholar
  135. 135.
    A. A. Ekaikin, V. Ya. Lipenkov, S. V. Popov, A. V. Turkeev, A. V., and D. O. Vladimirova, “Spatial variability of the snow-cover characteristics of Antarctic megadunes in the subglacial Lake Vostok region,” Probl. Arkt. Antarkt., No. (4), 71–89.Google Scholar
  136. 136.
    A. Landais, A. Ekaykin, E. Barkan, R. Winkler, and B. Luz, “Seasonal variations of 17O-excess and D-excess in snow precipitation at Vostok Station, East Antarctica,” J. Glaciol. 58 (210), 725–733 (2012).CrossRefGoogle Scholar
  137. 137.
    R. Winkler, A. Landais, C. Risi, M. Baroni, A. Ekaykin, J. Jouzel, J.-R. Petit, F. Prie, B. Minster, and S. Falourd, “Water isotopologues at Vostok (East Antarctica) suggest a stratospheric influence, accounting for mass independent fractionation,” Proc. Nat. Acad. Sci. 110 (44), 17674–17679 (2013).CrossRefGoogle Scholar
  138. 138.
    D. O. Vladimirova and A. A. Ekaikin, “Climatic variability in the section of the Davis Sea (East Antarctica) over the past 250 years according to geochemical data on ice-core of the 105-km well,” Probl. Arkt. Antarkt., No. 1, 102–113 (2014).Google Scholar
  139. 139.
    A. V. Kozachek, A. A. Ekaikin, V. Ya. Lipenkov, Yu. A. Shibaev, and R. Vaikmäe, “On the correlation of climatic variability in Central Antarctica with the climate of mid-and low-latitudes of the Southern Hemisphere,” Probl. Arkt. Antarkt., No. 4, 5–13 (2011).Google Scholar
  140. 140.
    N. N. Kazakova and M. B. Fridzon, “Assessment of the uniformity of time series of atmospheric temperature–wind sounding at Russian Antarctic stations,” Probl. Arkt. Antarkt., No. 1, 41–55 (2011).Google Scholar
  141. 141.
    E. N. Rusina, V. F. Radionov, and E. E. Sibir, “Variability of atmospheric aerosol-optical parameters in the northern and southern polar regions after 2000,” Probl. Arkt. Antarkt., No. 1, 51–60 (2013).Google Scholar
  142. 142.
    A. P. Makshtas, B. V. Ivanov, and V. F. Timachev, “Comparison of universal stability functions under strongly stratified atmospheric conditions,” Probl. Arkt. Antarkt., No. 3, 6–14 (2012).Google Scholar
  143. 143.
    B. V. Ivanov and A. M. Bezgreshnov, “Characteristics of fast ice in the Prydz Bay (on the example of Sandefjord Bay),” Probl. Arkt. Antarkt., No. 2, 33–40 (2014).Google Scholar
  144. 144.
    I. I. Mokhov and A. V. Malyshkin, “Analytical estimate of the critical global-warming level for the Antarctic ice sheet mass gain-to-loss transition,” Dokl. Earth Sci. 436 (1), 155–158 (2011).CrossRefGoogle Scholar
  145. 145.
    R. Kaur, H. N. Dutta, N. C. Deb, K. Gajananda, M. K. Srivastav, and V. E. Lagun, “Investigation of unusual atmospheric warming over the Schirmacher oasis, East Antarctica,” Int. J. Sci. Technol. 2 (7), 550–559 (2013).Google Scholar
  146. 146.
    R. Kaur, H. N. Dutta, N. C. Deb, K. Gajananda, M. K. Srivastav, and V. E. Lagun, “Role of coreless winter in favoring survival of microorganisms over the Schirmacher oasis, east Antarctic,” J. Ecophysiol. Occup. Health, Nos. 1–2, 11–19 (2013).Google Scholar
  147. 147.
    Kh. Gajananda, H. N. Dutta, and V. E. Lagun, “Land–isle–air–ocean interactions in the Schirmacher Oasis, East Antarctica,” in Antarctica: The Most Interactive Ice–Air–Ocean Environment, Ed. by J. Singh and H. N. Dutta (Nova Science Publishers, New York, 2011), Chap. 3, pp. 39–88.Google Scholar
  148. 148.
    J. Turner, N. Barrand, T. Bracegirdle, P. Convey, D. A. Hodgson, M. Jarvis, A. Jenkins, G. Marshall, M. P. Meredith, H. Roscoe, J. Shanklin, J. French, H. Goosse, M. Guglielmin, J. Gutt, S. Jacobs, M. C. Kennicutt, V. Masson-Delmotte, P. Mayewski, F. Navarro, S. A. Robinson, T. Scambos, M. Sparrow, C. Summerhayes, K. Speer, and A. Klepikov, “Antarctic climate change and the environment: An update,” Polar Rec. 50 (3), 237–259 (2014).CrossRefGoogle Scholar
  149. 149.
    A. V. Klepikov, “Discussion of the initiative for the International Polar Decade,” Ross. Polyarn. Issled., No. 2, 41–43 (2011).Google Scholar
  150. 150.
    A. V. Klepikov, V. E. Ryabinin, A. I. Danilov, and V. G. Dmitriev, “On the preparation of the International Polar Initiative,” Probl. Arkt. Antarkt., No. 4, 97–99 (2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Arctic and Antarctic Research InstituteSt. PetersburgRussia

Personalised recommendations