Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 53, Issue 5, pp 524–538 | Cite as

Influence of internal gravity waves on meteorological fields and gas constituents near Moscow and Beijing

  • I. P. Chunchuzov
  • V. G. Perepelkin
  • S. N. Kulichkov
  • G. I. Gorchakov
  • M. A. Kallistratova
  • A. V. Dzhola
  • J. Lyu
  • P. Teng
  • Y. Yang
  • W. Lin
  • Q. Li
  • Y. Sun
Article

Abstract

The influence of internal gravity waves on the spatial coherence and temporal variability of the atmospheric pressure, wind velocity, and gas constituents near Moscow and Beijing is studied in the mesoscale range of periods: from a few tens of seconds to several hours. The results of simultaneous measurements of variations in the atmospheric pressure (using a network of spaced microbarographs), wind velocity at different heights of the atmospheric boundary layer, and gas constituents are given for each city. The wave structures are filtered using a coherence analysis of the atmospheric pressure variations at different measurement sites. The dominant periods and the coherences, phase speeds, and horizontal scales of variations corresponding to these periods are estimated. The general mechanism of the influence of wave structures on meteorological fields and gas constituents is discussed, which is independent of the measurement site and the specificity of meteorological conditions.

Keywords

internal gravity waves mesoscale variations gas constituents coherence atmospheric front dominant periods atmospheric boundary layer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. E. Gossard and W.H. Hooke, Waves in the Atmosphere (Elsevier, Amsterdam, 1975).Google Scholar
  2. 2.
    A. Gill, Atmosphere–Ocean Dynamics (Academic, New York, 1982; Mir, Moscow, 1986), Vol. 2.Google Scholar
  3. 3.
    D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41 (1), 1003 (2003). doi 10.1029/2001RG000106CrossRefGoogle Scholar
  4. 4.
    J. T. Backmeister, S. D. Eckermann, P. N. Newman, L. Lait, K. R. Chan, M. Loewenstein, M. H. Profitt, and B. L. Gary, “Stratospheric horizontal wavenumber spectra of winds, potential temperature, and atmospheric tracers observed by high-altitude aircraft,” J. Geophys. Res. 101 (D5), 9441–9470 (1996).CrossRefGoogle Scholar
  5. 5.
    J. Sun, C. J. Nappo, L. Mahrt, et al., “Review of wave–turbulence interactions in the stable atmospheric boundary layer,” Rev. Geophys. 53 (2015). doi 10.1002/2015RG000487Google Scholar
  6. 6.
    O. G. Khutorova and G. M. Teptin, “An investigation of mesoscale wave processes in the surface layer using synchronous measurements of atmospheric parameters and admixtures,” Izv., Atmos. Ocean. Phys. 45 (5), 549–556 (2009).CrossRefGoogle Scholar
  7. 7.
    J. Seabrook and J. Whiteway, “Influence of mountains on Arctic tropospheric ozone,” J. Geophys. Res. 121 (4), 1935–1942 (2016). doi 10.1002/2015JD024114Google Scholar
  8. 8.
    T. Peacock and G. Haller, “Lagrangian coherent structures,” Phys. Today 41 (2), 41–49 (2013).CrossRefGoogle Scholar
  9. 9.
    D. S. Eckermann, D. E. Gibson-Wilde, and J. T. Backmeister, “Gravity wave perturbations of minor constituents: A parcel advection methodology,” J. Atmos. Sci. 55 (24), 3521–3539 (1998).CrossRefGoogle Scholar
  10. 10.
    R. E. Newell, Z.-X. Wu, Y. Zhu, et al., “Vertical finescale atmospheric structure measured from NASA DC-8 during PEM-West,” J. Geophys. Res. 101 (D1), 1943–1960 (1996).CrossRefGoogle Scholar
  11. 11.
    S. J. Caughey and C. J. Readings, “An observation of waves and turbulence in the Earth’s boundary layer,” Boundary-Layer Meteorol. 9, 279–296 (1975).CrossRefGoogle Scholar
  12. 12.
    Atmospheric Turbulence and Air Pollution Modeling, Ed. by F. T. M. Nieuwstadt and H. Van Dop (D. Reidel, Dordrecht, 1981).Google Scholar
  13. 13.
    W. Yuan, J. Xu, Y. Wu, J. Bian, and H. Chen, “Vertical wavenumber spectra of atmospheric ozone measured from ozonesonde observations,” Adv. Space Res. 43 (9), 1364–1371 (2009).CrossRefGoogle Scholar
  14. 14.
    A. Serafimovich, C. Nappo, and T. Foken, “Impact of gravity waves on the turbulent exchange above a forest site,” in 9th Symposium on Boundary Layers and Turbulence (Potsdam, 2010). http://gfzpublic.gfz-potsdam.de/pubman/item/escidoc:245816.Google Scholar
  15. 15.
    A. I. Grachev, S. V. Zagoruiko, A. K. Matveev, and M. I. Mordukhovich, “Some results of recording of atmospheric infrasound waves,” Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 14 (5), 474–483 (1978).Google Scholar
  16. 16.
    M. Tepper, The Application of the Hydraulic Analogy to Certain Atmospheric Flow Problems, US Weather Bureau Res. Paper No. 35 (Weather Bureau, Washington, 1952).Google Scholar
  17. 17.
    R. R. Hodges Jr., “Generation of turbulence in the upper atmosphere by internal gravity waves,” J. Geophys. Res. 72 (13), 3455–3458 (1967).CrossRefGoogle Scholar
  18. 18.
    N. V. Karpova, L. N. Petrova, and G. M. Shved, “Atmospheric and earth-surface oscillations with steady frequencies in the 0.7–1.5 and 2.5–5.0 h period ranges,” Izv., Atmos. Ocean. Phys. 40 (1), 10–20 (2004).Google Scholar
  19. 19.
    S. V. Garmash, E. M. Lin’kov, L. N. Petrova, and G. M. Shved, “Excitation of atmospheric oscillations by seismogravitational vibrations of the Earth,” Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 25 (12), 1290–1299 (1989).Google Scholar
  20. 20.
    E. M. Lin’kov, L. N. Petrova, and D. D. Zuroshvili, “Seismogravitational vibrations of the Earth and related atmospheric disturbances,” Dokl. Akad. Nauk SSSR 306 (2), 314–317 (1989).Google Scholar
  21. 21.
    G. M. Shved, L. N. Petrova, and O. S. Polyakova, “Penetration of the Earth’s free oscillations into the atmosphere,” Ann. Geophys. 18, 566–572 (2000).CrossRefGoogle Scholar
  22. 22.
    I. Chunchuzov, S. Kulichkov, V. Perepelkin, A. Ziemann, K. Arnold, and A. Kniffka, “Mesoscale variations in acoustic signals induced by atmospheric gravity waves,” J. Acoust. Soc. Am. 125 (2), 651–664 (2009).CrossRefGoogle Scholar
  23. 23.
    I. P. Chunchuzov, “On the nonlinear shaping mechanism for gravity wave spectrum in the atmosphere,” Ann. Geophys. 27, 4105–412 (2009).CrossRefGoogle Scholar
  24. 24.
    C. O. Hines, “The saturation of gravity waves in the middle atmosphere. Part II: Development of Dopplerspread theory,” J. Atmos. Sci. 48, 1360–1379 (1991).Google Scholar
  25. 25.
    R. S. Lindzen and R. Goody, “Radiative and photochemical processes in mesospheric dynamics. Part 1. Models for radiative and photochemical processes,” J. Atmos. Sci. 22, 341–348 (1965).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. P. Chunchuzov
    • 1
  • V. G. Perepelkin
    • 1
  • S. N. Kulichkov
    • 1
  • G. I. Gorchakov
    • 1
  • M. A. Kallistratova
    • 1
  • A. V. Dzhola
    • 1
  • J. Lyu
    • 2
  • P. Teng
    • 2
  • Y. Yang
    • 2
  • W. Lin
    • 3
  • Q. Li
    • 3
  • Y. Sun
    • 3
  1. 1.Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of AcousticsChinese Academy of SciencesBeijingChina
  3. 3.Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations