Izvestiya, Atmospheric and Oceanic Physics

, Volume 53, Issue 4, pp 433–440 | Cite as

Determination of the total ozone content from data of satellite IR Fourier-spectrometer

  • A. S. Garkusha
  • A. V. PolyakovEmail author
  • Yu. M. Timofeev
  • Ya. A. Virolainen


Examples of retrieval of the total ozone content (TOC) from the spectra of outgoing thermal radiation measured by the IRFS-2 device on the Meteor-M no. 2 meteorological satellite are presented. The technique, developed by the authors and based on an artificial neural network (ANN) approach with the use of TOC measurements by the satellite OMI device, is applied. A comparison of the results with the data of independent TOC measurements has shown their agreement within 2–5% for global ensemble and within 3–6% for separate latitudes and seasons. The errors estimated for IRFS-2 TOC measurements are close to the errors in measurements by a similar IASI device from the MetOp (EUMETSAT) satellite.


ozonosphere remote sensing total ozone content Meteor-M no. 2 IRFS-2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    WMO Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project, Report No. 52 (WMO, Geneva, 2011).Google Scholar
  2. 2.
    Yu. M. Timofeev, “Satellite methods for analyzing the atmospheric gas composition,” Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 25 (5), 451–472 (1989).Google Scholar
  3. 3.
    B. Hassler, I. Petropavlovskikh, J. Staehelin, et al., “Past changes in the vertical distribution of ozone— Part 1: Measurement techniques, uncertainties and availability,” Atmos. Meas. Tech. 7 (5), 1395–1427 (2014). doi 10.5194/amt-7-1395-2014CrossRefGoogle Scholar
  4. 4.
    V. V. Asmus, V. A. Zagrebaev, L. A. Makridenko, et al., “Meteorological satellites based on Meteor-M polar orbiting platform,” Russ. Meteorol. Hydrol., 39 (12), 787–794 (2014).CrossRefGoogle Scholar
  5. 5.
    Yu. M. Golovin, F. S. Zavelevich, A. G. Nikulin, et al., “Spaceborne infrared Fourier-transform spectrometers for temperature and humidity sounding of the Earth’s atmosphere,” Izv., Atmos. Ocean. Phys. 50 (9), 1004–1015 (2013).CrossRefGoogle Scholar
  6. 6.
    A. V. Polyakov, Yu. M. Timofeev, Ya. A. Virolainen, et al., “The IKFS-2 satellite atmospheric sounder. 1. Analysis of measured outgoing radiation spectra,” Issled. Zemli Kosmosa, 5, 71–78 (2016).Google Scholar
  7. 7.
    V. V. Asmus, Yu. M. Timofeev, A. V. Polyakov, et al., “Atmospheric temperature sounding with satellite IR Fourier Transform Spectrometer IKFS-2,” Izv., Atmos. Ocean. Phys. 53 (4) (2017).Google Scholar
  8. 8.
    E. Fetzer, L. M. McMillin, D. Tobin, et al., “AIRS/AMSU/HSB on the Aqua Mission: Design, science objectives, data products, and processing systems,” IEEE Trans. Geosci. Remote Sens. 41 (2), 253–264 (2003).CrossRefGoogle Scholar
  9. 9.
    T. August, D. Klaes, P. Schlüssel, et al., “IASI on Metop-A: Operational Level 2 retrievals after five years in orbit,” J. Quant. Spectrosc. 113, 1340–1371 (2012). doi 10.1016/j.jqsrt.2012.02.028CrossRefGoogle Scholar
  10. 10.
    A. V. Polyakov, Yu. M. Timofeev, and A. B. Uspensky, “Possibilities for determining temperature and emissivity of the land surface from data of satellite IR sounders with high spectral resolution (IRFS-2),” Izv., Atmos. Ocean. Phys. 47 (9), 1092–1096 (2011).CrossRefGoogle Scholar
  11. 11.
    A. S. Garkusha, A. V. Polyakov, and Yu. M. Timofeev, “Analysis of the possibilities for monitoring the characteristics of atmospheric gas composition using the IKFS-2 satellite sounder,” Issled. Zemli Kosmosa, 5, 38–41 (2016).Google Scholar
  12. 12.
    K. Ya. Kondrat’ev and Yu. M. Timofeev, Meteorological Sounding of the Atmosphere from Space (Gidrometeoizdat, Leningrad, 1978) [in Russian].Google Scholar
  13. 13.
    R. D. McPeters, S. Frith, and G. J. Labow, “OMI total column ozone: Extending the long-term data record,” Atmos. Meas. Tech. 8 (11), 4845–4850 (2015). doi 10.5194/amt-8-4845-2015CrossRefGoogle Scholar
  14. 14.
    M. E. Koukouli, D. S. Balis, D. Loyola, et al., “Geophysical validation and long-term consistency between GOME-2/MetOp-A total ozone column and measurements from the sensors GOME/ERS-2, SCIAMACHY/ ENVISAT and OMI/Aura,” Atmos. Meas. Tech. 5 (9), 2169–2181 (2012). doi 10.5194/amt-5-2169-2012CrossRefGoogle Scholar
  15. 15.
    G. Labow, R. McPeters, and P. K. Bhartia, et al., “A comparison of 40 years of SBUV measurements of column ozone with data from the Dobson/Brewer network,” J. Geophys. Res. 118 (13), 7370–7378 (2013). doi 10.1002/jgrd.50503Google Scholar
  16. 16.
    R. D. McPeters, M. Kroon, G. Labow, et al., “Validation of the aura ozone monitoring instrument total column ozone product,” J. Geophys. Res. 113 (15) (2008). doi 10.1029/2007JD008802Google Scholar
  17. 17.
    A. Boynard, C. Clerbaux, P-F. Coheur, et al., “Measurements of total and tropospheric ozone from IASI: Comparison with correlative satellite, ground-based and ozonesonde observations,” Atmos. Meas. Tech. 9 (16), 6255–6271 (2009). doi 10.5194/acp-9-6255-2009Google Scholar
  18. 18.
    S. Turquety, J. Hadji-Lazaro, and C. Clerbaux, “Operational trace gas retrieval algorithm for the infrared atmospheric sounding interferometer,” J. Geophys. Res. 109 (D2), 1301 (2004). doi 10.1029/2004JD004821Google Scholar
  19. 19.
    C. Viatte, M. Schneider, A. Redondas, et al., “Comparison of ground-based FTIR and Brewer O3 total column with data from two different IASI algorithms and from OMI and GOME-2 satellite instruments,” Atmos. Meas. Tech. 4 (3), 535–546 (2011). doi 10.5194/amt-4- 535-2011CrossRefGoogle Scholar
  20. 20.
    M. Antón, D. Loyola, C. Clerbaux, et al., “Validation of the MetOp-A total ozone data from GOME-2 and IASI using reference ground-based measurements at the Iberian Peninsula,” Remote Sens. Environ. 115 (6), 1380–1386 (2011).CrossRefGoogle Scholar
  21. 21.
    C. Scannell and D. Hurtmans, “Antarctic ozone hole as observed by IASI/MetOp for 2008–2010,” Atmos. Meas. Tech. 5 (1), 123–139 (2012). doi 10.5194/amt-5- 123-2012CrossRefGoogle Scholar
  22. 22.
    M. Toihir, H. Bencherif, V. Sivakumar, et al., “Comparison of total column ozone obtained by the IASI-MetOp satellite with ground-based and OMI satellite observations in the southern tropics and subtropics,” Ann. Geophys. 33, 1135–1146 (2015). doi 10.5194/angeo-33-1135-2015CrossRefGoogle Scholar
  23. 23.
    A. Boynard, D. Hurtmans, M. E. Koukouli, et al., “Seven years of IASI ozone retrievals from FORLI: Validation with independent total column and vertical profile measurements,” Atmos. Meas. Tech. Discuss. (2016). doi 10.5194/amt-2016-11Google Scholar
  24. 24.
    G. B. Osterman, S. S. Kulawik, H. M. Worden, et al., “Validation of Tropospheric Emission Spectrometer (TES) measurements of the total, stratospheric, and tropospheric column abundance of ozone,” J. Geophys. Res. 113 (D15), S16 (2008). doi 10.1029/2007JD008801CrossRefGoogle Scholar
  25. 25.
    G. Dufour, M. Eremenko, A. Griesfeller, et al., “Validation of three different scientific ozone products retrieved from IASI spectra using ozonesondes,” Atmos. Meas. Tech. 5 (3), 611–630 (2012). doi 10.5194/amt-5-611- 2012CrossRefGoogle Scholar
  26. 26.
    Ya. A. Virolainen, Yu. M. Timofeev, A. V. Poberovskii, et al., “Evaluation of ozone content in different atmospheric layers using ground-based Fourier transform spectrometry,” Izv., Atmos. Ocean. Phys. 51 (2), 167–176 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. S. Garkusha
    • 1
  • A. V. Polyakov
    • 1
    Email author
  • Yu. M. Timofeev
    • 1
  • Ya. A. Virolainen
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations