Skip to main content
Log in

Total content of carbon monoxide in the atmosphere over Russian regions according to satellite data

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Carbon monoxide (CO) total columns over European Russia (ER) and western Siberia (WS) have been analyzed using MOPITT (V5, TIR/NIR, L3) IR-radiometer data obtained in 2000–2014. High CO contents are revealed over large urban and industrial agglomerations and over regions of oil-and-gas production. A stable local CO maximum is observed over the Moscow agglomeration. Statistical characteristics of CO total columns observed in the atmosphere over ER and WS in 2000–2014 are presented. An analysis of long-term changes in CO content reveals nonlinear changes in the CO total column over northern Eurasia in 2000–2014. Results of a comparative analysis of annual variations in atmospheric CO contents over ER and WS are given. Based on Fourier analysis, empirical models of annual variations in total CO contents over ER and WS are proposed. Relations between regional CO contents and fire characteristics and between spatial CO distributions and features of large-scale atmospheric dynamics under conditions of weather and climate anomalies in the summers of 2010 in ER and 2012 in WS are analyzed. Data on total CO contents measured with a MOPITT satellite radiometer and a ground-based spectrometer operating at the Zvenigorod Scientific Station of the Obukhov Institute of Atmospheric Physics are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Seiler, “The cycle of atmospheric CO,” Tellus 26, 116–135 (1974).

    Article  Google Scholar 

  2. IPCC 2013: Climate Change 2013: The Physical Science Basis, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, (Cambridge University Press, Cambridge, 2013).

  3. P. Crutzen and P. Zimmermann, “The changing photochemistry of the troposphere,” Tellus AB 43 (4), 136–151 (1991).

    Article  Google Scholar 

  4. I. L. Karol and A. A. Kiselev, “What forest fires bring to atmosphere?,” Priroda (Moscow, Russ. Fed.), No. 5, 40–46 (2007).

    Google Scholar 

  5. L. D. Prockop and R. I. Chichkova, “Carbon monoxide intoxication: An updated review,” J. Neurol. Sci. 262 (1–2), 122–130 (2007).

    Article  Google Scholar 

  6. V. I. Dianov-Klokov, L. N. Yurganov, E. I. Grechko, and A. V. Dzhola, “Spectroscopic measurements of atmospheric carbon monoxide and methane. 1: Latitudinal distribution,” J. Atmos. Chem. 8, 139–151 (1989).

    Article  Google Scholar 

  7. L. N. Yurganov, E. I. Grechko, and A. V. Dzhola, “Zvenigorod carbon monoxide total column time series: 27 years of measurements,” Chemosphere: Global Change Sci. 1, 127–136 (1999).

    Google Scholar 

  8. M. V. Makarova, V. S. Kostsov, and A. V. Poberovskii, “Study of the factors determining anomalous variability of carbon dioxide total column amount over St. Petersburg,” Izv., Atmos. Ocean. Phys. 43 (4), 497–504 (2007).

    Article  Google Scholar 

  9. M. V. Makarova, A. V. Poberovskii, and Yu. M. Timofeev, “Temporal variability of total atmospheric carbon monoxide over St. Petersburg,” Izv., Atmos. Ocean. Phys. 40 (3), 313–322 (2004).

    Google Scholar 

  10. V. N. Aref’ev, F. V. Kashin, M. D. Orozaliev, et al., “Structure of carbon monoxide time variations in the atmospheric thickness over Central Eurasia (Issyk Kul Monitoring Station),” Izv., Atmos. Ocean. Phys. 49 (2), 148–153 (2013).

    Article  Google Scholar 

  11. S. A. Sitnov, “Analysis of the quasi-biennial variability of carbon monoxide total column,” Izv., Atmos. Ocean. Phys. 44 (4), 459–466 (2008).

    Article  Google Scholar 

  12. P. C. Novelli, K. A. Masarie, and P. M. Lang, “Distributions and recent changes in atmospheric carbon monoxide,” J. Geophys. Res. 103, 19015–19033 (1998).

    Article  Google Scholar 

  13. G. I. Gorchakov, E. G. Semutnikova, E. V. Zotkin, et al., “Variations in gaseous pollutants in the air basin of Moscow,” Izv., Atmos. Ocean. Phys. 42 (2), 156–170 (2006).

    Article  Google Scholar 

  14. E. I. Grechko, A. V. Dzhola, V. S. Rakitin, et al., “Variations of the carbon monoxide total column and parameters of the atmospheric boundary layer in the center of Moscow,” Atmos. Oceanic Opt. 22 (2), 203–208 (2009).

    Article  Google Scholar 

  15. F. V. Kashin, R. M. Akimenko, V. N. Aref’ev, et al., “Carbon oxide in the surface air (Obninsk monitoring station),” Izv., Atmos. Ocean. Phys. 46 (1), 45–54 (2010).

    Article  Google Scholar 

  16. G. I. Gorchakov, E. G. Semutnikova, A. V. Karpov, et al., “Air pollution week-long cycle in Moscow: Quantitative parameters and refined statistical forecasting of impurity concentration,” Opt. Atmos. Okeana 23 (9), 784–792 (2010).

    Google Scholar 

  17. S. A. Sitnov and T. G. Adiks, “Weekly variability of surface CO concentrations in Moscow,” Izv., Atmos. Ocean. Phys. 50 (2), 160–170 (2014).

    Article  Google Scholar 

  18. S. A. Sitnov, “Aerosol optical thickness and the total carbon monoxide content over the European Russia territory in the 2010 summer period of mass fires: Interrelation between the variation in pollutants and meteorological parameters,” Izv., Atmos. Ocean. Phys. 47 (6), 714–728 (2011).

    Article  Google Scholar 

  19. G. S. Golitsyn, G. I. Gorchakov, E. I. Grechko, et al., “Extreme carbon monoxide pollution of the atmospheric boundary layer in Moscow region in the summer of 2010,” Dokl. Earth Sci. 441 (2), 1666–1672 (2011).

    Article  Google Scholar 

  20. E. V. Fokeeva, A. N. Safronov, V. S. Rakitin, et al., “Investigation of the 2010 July–August fires impact on carbon monoxide atmospheric pollution in Moscow and its outskirts, estimating of emissions,” Izv., Atmos. Ocean. Phys. 47 (6), 682–698 (2011).

    Article  Google Scholar 

  21. D. P. Edwards, L. K. Emmons, D. A. Hauglustaine, et al., “Observations of carbon monoxide and aerosols from the Terra satellite: Northern Hemisphere variability,” J. Geophys. Res. 109, D24202 (2004).

    Article  Google Scholar 

  22. M. Buchwitz, I. Khlystova, H. Bovensmann, and J. P. Burrows, “Three years of global carbon monoxide from SCIAMACHY: Comparison with MOPITT and first results related to the detection of enhanced CO over cities,” Atmos. Chem. Phys. 7, 2399–2411 (2007).

    Article  Google Scholar 

  23. H. M. Worden, M. N. Deeter, and C. Frankenberg, “Decadal record of satellite carbon monoxide observations,” Atmos. Chem. Phys. 13, 837–850 (2013).

    Article  Google Scholar 

  24. J. Liu, J. R. Drummond, Q. Li, et al., “Satellite mapping of CO emission from forest fires in Northwest America using MOPITT measurements,” Remote Sens. Environ. 95 (4), 502–516 (2005).

    Article  Google Scholar 

  25. A. Fortems-Cheiney, F. Chevallier, I. Pison, et al., “Ten years of CO emissions as seen from Measurements of Pollution in the Troposphere (MOPITT),” J. Geophys. Res. 116, D05304 (2011).

    Article  Google Scholar 

  26. W. Stremme, M. Grutter, C. Rivera, et al., “Top–down estimation of carbon monoxide emissions from the Mexico megacity based on FTIR measurements from ground and space,” Atmos. Chem. Phys. 13 (3), 1357–1376 (2013).

    Article  Google Scholar 

  27. J. Kar, H. Bremer, J. R. Drummond, et al., “Evidence of vertical transport of carbon monoxide from Measurements of Pollution in the Troposphere (MOPITT),” Geophys. Res. Lett. 31, L23105 (2004).

    Article  Google Scholar 

  28. W. W. McMillan, J. X. Warner, M. McCourt Comer, et al., “AIRS views transport from 12 to 22 July 2004 Alaskan/Canadian fires: Correlation of AIRS CO and MODIS AOD with forward trajectories and comparison of AIRS CO retrievals with DC-8 in situ measurements during INTEX-A/ICARTT,” J. Geophys. Res. 113, D20301 (2008).

    Article  Google Scholar 

  29. L. N. Yurganov, W. W. McMillan, A. V. Dzhola, et al., “Global AIRS and MOPITT CO measurements: Validation, comparison, and links to biomass burning variations and carbon cycle,” J. Geophys. Res. 113, D09301 (2008).

    Article  Google Scholar 

  30. S. M. Illingworth, J. J. Remedios, H. Boesch, et al., “A comparison of OEM CO retrievals from the IASI and MOPITT instruments,” Atmos. Meas. Tech. 4, 775–793 (2011).

    Article  Google Scholar 

  31. M. N. Deeter, S. Martinez-Alonso, D. P. Edwards, et al., “Validation of MOPITT Version 5 thermalinfrared, near-infrared, and multispectral carbon monoxide profile retrievals for 2000–2011,” J. Geophys. Res.: Atmos. 118, 6710–6725 (2013).

    Google Scholar 

  32. J. X. Warner, R. Yang, Z. Wei, et al., “Global carbon monoxide products from combined AIRS, TES and MLS measurements on A-train satellites,” Atmos. Chem. Phys. 14 (1), 103–114 (2014).

    Article  Google Scholar 

  33. J. R. Drummond, J. Zou, F. Nichitiu, et al., “A review of 9-year performance and operation of the MOPITT instrument,” Adv. Space Res. 45, 760–774 (2010).

    Article  Google Scholar 

  34. M. N. Deeter, L. K. Emmons, G. L. Francis, et al., “Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument,” J. Geophys. Res. 108 (D14), 4399 (2003).

    Article  Google Scholar 

  35. L. Giglio, J. Descloitres, C. O. Justice, and Y. J. Kaufman, “An enhanced contextual fire detection algorithm for MODIS,” Remote Sens. Environ. 87, 273–282 (2003).

    Article  Google Scholar 

  36. C. O. Justice, L. Giglio, S. Korontzi, et al., “The MODIS fire products,” Remote Sens. Environ. 83, 244–262 (2002).

    Article  Google Scholar 

  37. D. K. Davies, S. Ilavajhala, M. M. Wong, and C. O. Justice, “Fire information for resource management system: Archiving and distributing MODIS active fire data,” IEEE Trans. Geosci. Remote Sens. 47 (1), 72–79 (2009).

    Article  Google Scholar 

  38. S. Platnick, M. D. King, S. A. Ackerman, et al., “The MODIS cloud products: Algorithms and examples from Terra,” IEEE Trans. Geosci. Rem. Sens. 41 (2), 459–473 (2003).

    Article  Google Scholar 

  39. R. Kistler, W. Collins, S. Saha, et al., “The NCEPNCAR 50-year reanalysis: Monthly means CD-ROM and documentation,” Bull. Am. Meteorol. Soc. 82, 247–267 (2001).

    Article  Google Scholar 

  40. L. Yurganov, W. McMillan, E. Grechko, and A. Dzhola, “Analysis of global and regional CO burdens measured from space between 2000 and 2009 and validated by ground-based solar tracking spectrometers,” Atmos. Chem. Phys. 10, 3479–3494 (2010).

    Article  Google Scholar 

  41. I. I. Mokhov, A. V. Chernokulsky, and I. M. Shkolnik, “Regional model assessments of fire risks under global climate changes,” Dokl. Earth Sci. 411 (2), 1485–1488 (2006).

    Article  Google Scholar 

  42. L. N. Yurganov, V. Rakitin, A. Dzhola, et al., “Satellite-and ground-based CO total column observations over 2010 Russian fires: Accuracy of top–down estimates based on thermal IR satellite data,” Atmos. Chem. Phys. 11, 7925–7942 (2011).

    Article  Google Scholar 

  43. I. I. Mokhov, “Specific features of the 2010 summer heat formation in the European territory of Russia in the context of general climate changes and climate anomalies,” Izv., Atmos. Ocean. Phys. 47 (6), 653–660 (2011).

    Article  Google Scholar 

  44. G. I. Gorchakov, S. A. Sitnov, M. A. Sviridenkov, et al., “Satellite and ground-based monitoring of smoke in the atmosphere during the summer wildfires in European Russia in 2010 and Siberia in 2012,” Int. J. Remote Sens. 35 (15), 5698–5721 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Sitnov.

Additional information

Original Russian Text © S.A. Sitnov, I.I. Mokhov, A.V. Dzhola, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2017, Vol. 53, No. 1, pp. 38–55.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitnov, S.A., Mokhov, I.I. & Dzhola, A.V. Total content of carbon monoxide in the atmosphere over Russian regions according to satellite data. Izv. Atmos. Ocean. Phys. 53, 32–48 (2017). https://doi.org/10.1134/S0001433817010121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433817010121

Keywords

Navigation