Izvestiya, Atmospheric and Oceanic Physics

, Volume 53, Issue 1, pp 76–83 | Cite as

Features of wind field over the sea surface in the coastal area

  • A. K. Monzikova
  • V. N. Kudryavtsev
  • A. G. Myasoedov
  • B. Chapron
  • S. S. Zilitinkevich


In this paper we analyze SAR wind field features, in particular the effects of wind shadowing. These effects represent the dynamics of the internal atmospheric boundary layer, which is formed due to the transition of the air flow arriving from the rough land surface to the “smooth” water surface. In the wind-shadowed area, the flow accelerates, and a surface wind stress increases with fetch. The width of the shadow depends not only on the wind speed and atmospheric boundary layer stratification, but also on geographic features such as windflow multiple transformations over the complex surface land–Lake Chudskoe–land–Gulf of Finland. Measurements showed that, in the area of wind acceleration, the surface stress normalized by an equilibrium value (far from the coast) is a universal function of dimensionless fetch Xf/G. Surface wind stress reaches an equilibrium value at Xf/G ≈ 0.4, which is the scale of the planetary-boundary-layer relaxation.


wind transformation coastal area internal boundary layer SAR Gulf of Finland 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. R. Garrat, “The internal boundary layer—a review,” Boundary-Layer Meteorol. 50, 171–203 (1990).CrossRefGoogle Scholar
  2. 2.
    E. F. Bradley, “A micrometeorological study of velocity profiles and surface drag in the region modified by a change in surface roughness,” Q. J. R. Meteorol. Soc. 94, 361–379 (1968).CrossRefGoogle Scholar
  3. 3.
    G. S. Raynor, P. Michael, R. M. Brown, and S. Sethurman, “Studies of atmospheric diffusion from nearshore oceanic site,” J. Appl. Meteorol. 7, 331–348 (1975).Google Scholar
  4. 4.
    G. S. Raynor, S. Sethurman, and R. M. Brown, “Formation and characteristics of coastal internal boundary layers during onshore flows,” Boundary-Layer Meteorol. 16, 487–514 (1979).CrossRefGoogle Scholar
  5. 5.
    V. N. Kudryavtsev, V. K. Makin, A. M. G. Klein Tank, and J. W. Verkaik, “A model of wind transformation over water–land surfaces,” Sci. Rep. De Bilt 1 (2001).Google Scholar
  6. 6.
    R. C. Beal, G. S. Young, F. Monaldo, et al., High Resolution Wind Monitoring with Wide Swath SAR: AUser’s Guide (U.S. Department of Commerce, Washington, D.C., 2005).Google Scholar
  7. 7.
    W. Alpers, A. Mouche, A. Y. Ivanov, and B. Brummer, “High resolution wind fields over the Black Sea derived from Envisat ASAR data using an advanced wind retrieval algorithm,” in Proceedings of the 4th International Workshop Sea SAR 2012, Tromsö, Norway, 18–22 June 2012, 2013, ESA SP-709, pp. 239–248.Google Scholar
  8. 8.
    H. Hersbach, “CMOD5.N: A C-band geophysical model function for equivalent neutral wind,” ECMWF Tech. Memo. 554 (2008).Google Scholar
  9. 9.
    H. Charnock, “Wind stress on water surface,” Q. J. R. Meteorol. Soc. 81, 639–640 (1955).CrossRefGoogle Scholar
  10. 10.
    N. Wiener, Extrapolation, Interpretation, and Smoothing of Stationary Time Series with Engineering Application (M.I.T. Press and John Wiley and Sons, New York, 1949).Google Scholar
  11. 11.
    R. A. Brown, “On two-layer models and the similarity functions for the PBL,” Boundary-Layer Meteorol. 24 (4), 451–463 (1982).CrossRefGoogle Scholar
  12. 12.
    S. S. Zilitinkevich, “Velocity profiles, resistance law and the dissipation rate of mean flow kinetic energy in a neutrally and stable stratified planetary boundary layer,” Boundary-Layer Meteorol. 46, 367–387 (1989).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. K. Monzikova
    • 1
  • V. N. Kudryavtsev
    • 1
  • A. G. Myasoedov
    • 1
  • B. Chapron
    • 1
    • 2
  • S. S. Zilitinkevich
    • 3
    • 4
    • 5
    • 6
  1. 1.Russian State Hydrometeorological UniversitySt. PetersburgRussia
  2. 2.Ifremer, Pointe du DiablePlouzanéFrance
  3. 3.Finnish Meteorological InstituteHelsinkiFinland
  4. 4.Lobachevskii State University of Nizhny NovgorodNizhny NovgorodRussia
  5. 5.Moscow State UniversityMoscowRussia
  6. 6.Institute of GeographyRussian Academy of SciencesMoscowRussia

Personalised recommendations