Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 52, Issue 9, pp 1128–1136 | Cite as

Statistical characteristics of polar lows over the Nordic Seas based on satellite passive microwave data

  • J. E. Smirnova
  • E. V. Zabolotskikh
  • L. P. Bobylev
  • B. Chapron
Studying Atmospheric Processes from Space
  • 34 Downloads

Abstract

In this study polar lows over the Nordic Seas for the period of 1995–2008 have been detected and studied using the Special Sensor Microwave Imager (SSM/I) data. A new methodology for polar low detection and monitoring based on the analysis of the total atmospheric water vapor content (WVC) fields retrieved from SSM/I was used. Lifetimes, diameters, translation speeds, distances traveled, and intensities were estimated for the detected polar lows using SSM/I WVC, sea surface wind speed fields and infrared imagery. Over the Norwegian and Barents Seas, the polar low activity was found to be almost equal. A positive tendency in the total number of polar lows for the time period of 1995–2008 was detected.

Keywords

statistical characteristics of polar lows total atmospheric water vapor content SSM/I Nordic Seas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blechschmidt, A.M., A 2-year climatology of polar low events over the Nordic seas from satellite remote sensing, Geophys. Res. Lett., 2008, vol. 35, L09815. doi 10.1029/2008GL033706CrossRefGoogle Scholar
  2. Bobylev, L.P., Zabolotskikh, E.V., Mitnik, L.M., and Mitnik, M.L., Atmospheric water vapor and cloud liquid water retrieval over the Arctic Ocean using satellite passive microwave sensing, IEEE Trans. Geosci. Remote Sens., 2010, vol. 48, no. 1, pp. 283–294.CrossRefGoogle Scholar
  3. Bobylev, L.P., Zabolotskikh, E.V., Mitnik, L.M., and Mitnik, M.L., Arctic polar low detection and monitoring using atmospheric water vapor retrievals from satellite passive microwave data, IEEE Trans. Geosci. Remote Sens., 2011, vol. 49, no. 9, pp. 3302–3310.CrossRefGoogle Scholar
  4. Comiso, J.C., Parkinson, C.L., Gersten, R., and Stock, L., Accelerated decline in the Arctic Sea ice cover, Geophys. Res. Lett., 2008, vol. 35, L01703. doi 10.1029/2007GL03197CrossRefGoogle Scholar
  5. Condron, A., Bigg, G.R., and Renfrew, I.A., Polar mesoscale cyclones in the Northeast Atlantic: Comparing climatologies from ERA-40 and satellite imagery, Mon. Weather Rev., 2006, vol. 134, no. 5, pp. 1518–1533. doi 10.1175/MWR3136.1CrossRefGoogle Scholar
  6. Condron, A., Bigg, G.R., and Renfrew, I.A., Modeling the impact of polar mesocyclones on ocean circulation, J. Geophys. Res., 2008, vol. 113, C10005. doi 10.1029/2007JC004599CrossRefGoogle Scholar
  7. Kolstad, E., Bracegirdle, T.J., and Seierstad, I.A., Marine cold-air outbreaks in the North Atlantic: Temporal distribution and associations with large-scale atmospheric circulation, Clim. Dyn., 2009, vol. 33, no. 2, pp. 187–197. doi 10.1007/s00382-008-0431-5CrossRefGoogle Scholar
  8. Lutsenko, E.I. and Lagun, V.E., Polar Mesoscale Cyclonic Vortices in the Arctic Atmosphere. A Reference Book, St. Petersburg: AANII, 2010. http://www.aari.ru/projects/mesocyclone/mez_arc.pdf.Google Scholar
  9. Mokhov, I.I., Akperov, M.G., Lagun, V.E., and Lutsenko, E.I., Intense Arctic mesocyclones, Izv., Atmos. Ocean. Phys., 2007, vol. 43, no. 3, pp. 259–265.CrossRefGoogle Scholar
  10. Rasmussen, E.A. and Turner, J., Polar Lows: Mesoscale Weather Systems in the Polar Regions, Cambridge: Cambridge Univ. Press, 2003.CrossRefGoogle Scholar
  11. Zahn, M. and von Storch, H., A long-term climatology of North Atlantic polar lows, Geophys. Res. Lett., 2008, vol. 35, no. 22, L22702.CrossRefGoogle Scholar
  12. Zahn, M. and von Storch, H., Decreased frequency of North Atlantic polar lows associated with future climate warming, Nature, 2010, vol. 467, pp. 309–312.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • J. E. Smirnova
    • 1
    • 2
  • E. V. Zabolotskikh
    • 1
  • L. P. Bobylev
    • 2
  • B. Chapron
    • 1
    • 3
  1. 1.Russian State Hydrometeorological UniversitySt. PetersburgRussia
  2. 2.Scientific Foundation “Nansen International Environmental and Remote Sensing Centre”St. PetersburgRussia
  3. 3.Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER)BrestFrance

Personalised recommendations