Izvestiya, Atmospheric and Oceanic Physics

, Volume 52, Issue 9, pp 1064–1077 | Cite as

Convective structures in the Lofoten Basin based on satellite and Argo data

  • V. A. Alexeev
  • V. V. Ivanov
  • I. A. Repina
  • O. Yu. Lavrova
  • S. V. Stanichny
Stydying Seas and Oceans from Space


We discuss the possibility of detecting deep convection in the Lofoten Basin of the Norwegian Sea based on the eddy structures revealed from the satellite data. Satellite altimetry, SAR imagery, and MODIS satellite spectral radiometer sea-surface temperature (SST) data are used in the analysis, along with the data of oceanographic Argo floats. It is shown that the eddies identified from the satellite data correspond to the convective cells in the same region according to the data of the Argo floats. We consider several examples of the summer eddy and one winter eddy and the corresponding structures in the ocean measured by the Argo floats when they were located close to the identified eddies. As this method develops and improves, it can be used for the analysis of the dynamic of oceanic eddies in the region of the Lofoten Basin, and possibly in other regions with active deep convection.


thermohaline structure of the Arctic waters deep convection sea-surface temperature satellite altimetry Argo oceanographic floats 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alekseev, G.V., Bagryantsev, M.V., and Bogorodskii, P.V., The water structure and circulation near the anticyclonic gyre in the northeast of the Norwegian Sea, in Struktura i izmenchivost' krupnomasshtabnykh okeanologicheskikh protsessov i polei v Norvezhskoi energoaktivnoi zone (The Structure and Variability of Large-Scale Oceanic Processes and Fields in the Norwegian Energy- Active Zone), Leningrad: Gidrometeoizdat, 1989, pp. 27–36.Google Scholar
  2. Alpers, W. and Hühnerfuss, H., The damping of ocean waves by surface films: A new look at an old problem, J. Geophys. Res., 1989, vol. 94, no. C5, pp. 6251–6265.CrossRefGoogle Scholar
  3. Androsov A., Rubino, A., Romeiser, R., and Sein, D., Open-ocean convection in the Greenland Sea: Preconditioning through a mesoscale chimney and detectability in SAR imagery studied with a hierarchy of nested numerical models, Meteorol. Z., 2005, vol. 14, no. 6, pp. 693–702.CrossRefGoogle Scholar
  4. Atlas okeanov. Severnyi Ledovityi okean (Atlas of Oceans: The Northern Ocean), Moscow: Izdatel’stvo Voenno-Morskogo Flota SSSR, 1980.Google Scholar
  5. Bondur, V.G., Aerospace methods in modern oceanology, in Novye idei v okeanologii (New Ideas in Oceanology), vol. 1: Fizika. Khimiya. Biologiya (Physics, Chemistry, Biology), Moscow: Nauka, 2004, pp. 55–117.Google Scholar
  6. Broeker, W., The great ocean conveyor, Nat. Hist. Mag., 1987, vol. 97, pp. 74–82.Google Scholar
  7. Bulatov, M.G., Kravtsov, Yu.A., Kuz’min, A.V., Lavrova, O.Yu., Mityagina, M.I., Raev, M.D., and Skvortsov, E.I., Mikrovolnovye issledovaniya morskoi poverkhnosti v pribrezhnoi zone (Microwave Studies of Sea Surface in Coastal Areas), Moscow: KDU, 2003.Google Scholar
  8. Carsey, F.D. and Roach, A.T., Oceanic convection in the Greenland Sea Odden Region as interpreted in satellite data, in The Polar Oceans and Their Role in Shaping the Global Environment, Johannessen, O.M., Muench, R.D., and Overland, J.E., Eds., Washington, D.C.: Am. Geophys. Union, 1995, vol. 85, pp. 211–222.CrossRefGoogle Scholar
  9. Dickson, R.R. and Brown, J., The production of North Atlantic Deep Water: Sources, rates, and pathways, J. Geophys. Res., 1994, vol. 99, no. C6, pp. 12319–12341.CrossRefGoogle Scholar
  10. Fedorov, K.N., Fizicheskaya priroda i struktura okeanicheskikh frontov (The Physical Nature and Structure of Oceanic Fronts), Leningrad: Gidrometeoizdat, 1983.Google Scholar
  11. Fedorov, K.N. and Ginzburg, A.I., Pripoverkhnostnyi sloi okeana (Near-Surface Oceanic Layers), Leningrad: Gidrometeoizdat, 1988.Google Scholar
  12. Ginzburg, A.I., Kostianoy, A.G., and Sheremet, N.A., Sea surface temperature variability, in The Black Sea Environment (The Handbook of Environmental Chemistry), Kostianoy, A.G. and Kosarev, A.N, Eds., Berlin: Springer, 2008, vol. 5Q, pp. 255–275. doi 10.1007/698_5_06710.1007/698_5_067CrossRefGoogle Scholar
  13. Gould, J., Roemmich, D., Wijffels, S., et al., Argo profiling floats bring new era of in situ ocean observations, EOS, Trans. Am. Geophys. Union, 2014, vol. 85, no. 19, pp. 185–191.CrossRefGoogle Scholar
  14. Helland-Hansen, B. and Nansen, F., The Norwegian Sea: Its Physical Oceanography Based Upon the Norwegian Sea Researches 1900–1904, Kristiania: Det Mallingske Bogtrykkeri, 1909, Rep. Norw. Fish. Mar. Invest., vol. 2, no. 2.Google Scholar
  15. Hosoda, K., Murakami, H., Sakaida, F., and Kawamura, H., Algorithm and validation of sea surface temperature observation using MODIS sensors aboard Terra and Aqua in the western North Pacific, J. Oceanogr., 2007, vol. 63, no. 2, pp. 267–280.CrossRefGoogle Scholar
  16. Ivanov, V.V. and Korablev, A.A., Formation and regeneration of the inner pycnocline lens in the Norwegian Sea, Meteorol. Gidrol., 1995a, no. 9, pp. 102–110.Google Scholar
  17. Ivanov, V.V. and Korablev, A.A., Dynamics of the inner pycnocline lens in the Norwegian Sea, Meteorol. Gidrol., 1995b, no. 10, pp. 55–62.Google Scholar
  18. Kendall, L., Carder, F., Chen, R., Lee, Z., Hawes, S.K., and Cannizzaro, J.P., MODIS ocean science team algorithm theoretical basis document, Case 2: Chlorophyll a. Version 7, 30 January 2003, College of Marine Science, University of South Florida.Google Scholar
  19. Kidwell, K., NOAA Polar Orbiter Data (TIROS-N, NOAA-6, NOAA-7, NOAA-8, NOAA-9, NOAA-10, NOAA-11, NOAA-12, and NOAA-14) Users Guide, Washington, D.C.: NOAA/NESDIS, 1995.Google Scholar
  20. Kohl, A., Generation and stability of a quasi-permanent vortex in the Lofoten Basin, J. Phys. Oceanogr., 2007, vol. 37, pp. 2637–2651.CrossRefGoogle Scholar
  21. Korablev, A.A. and Ivanov, V.V., Variability of oceanographic conditions in the region of the anticyclonic gyre of the Norwegian Sea, in Krupnomasshtabnye gidrometeorologicheskie protsessy v Norvezhskom i Grenlandskom moryakh. Sbornik nauchnykh trudov (Large-Scale Hydrometeorological Processes in the Norwegian and Greenland seas: Collection of Scientific Works), Alekseev, G.V. and Bogorodskii, P.V., Eds., St. Petersburg: Gidrometeoizdat, 1994, pp. 120–125.Google Scholar
  22. Koszalka, I., LaCasce, J.H., Andersson, M., Orvik, K.A., and Mauritzen, C., Surface circulation in the Nordic Seas from clustered drifters, Deep-Sea Res. I, 2011, vol. 58, no. 4, pp. 468–485. doi 10.1016/j.dsr.2011.01.007CrossRefGoogle Scholar
  23. Kozlov, V.F., Modeli topograficheskikh vikhrei v okeane (Models of Topographic Vortices in the Ocean), Moscow: Nauka, 1983.Google Scholar
  24. Lappo, S.S., On the source of northward heat advection through the equator in the Atlantic Ocean, in Issledovanie protsessov vzaimodeistviya okeana i atmosfery (Study of Ocean–Atmosphere Interaction Processes), Moscow, 1984, pp. 125–129.Google Scholar
  25. Lavrova, O.Yu., Kostyanoi, A.G., Lebedev, S.A., Mityagina, M.I., Ginzburg, A.I., and Sheremet, N.A., Kompleksnyi sputnikovyi monitoring morei Rossii (Integrated Satellite Monitoring of Seas in Russia), Moscow: IKI RAN, 2011.Google Scholar
  26. Lebedev, S.A. and Kostyanoi, A.G., Sputnikovaya al’timetriya Kaspiiskogo morya (Satellite Altimetry of the Caspian Sea), Moscow: More, 2005.Google Scholar
  27. Lebedev, S.A., Satellite altimetry in geosciences, Sovr. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2013, vol. 10, no. 3, pp. 33–49.Google Scholar
  28. Minnett, P.J., Brown, O.B., Evans, R.H., Key, E.L., Kearns, E.J., Kilpatrick, K., Kumar, A., Maillet, K.A., and Szczodrak, G., Sea-surface temperature measurements from the moderate-resolution imaging spectroradiometer (MODIS) on Aqua and Terra, IEEE Int. Geosci. Remote Sens. Symp. Proc., 2004, vol. 7, pp. 4576–4579.Google Scholar
  29. Mityagina, M.I., Lavrova, O.Y., and Karimova, S.S., Multi-sensor survey of seasonal variability in coastal eddy and internal wave signatures in the north-eastern Black Sea, Int. J. Remote Sens., 2010, vol. 17, pp. 4779–4790.CrossRefGoogle Scholar
  30. Pedlosky, J., Geophysical Fluid Dynamics, New York: Springer, 1979; Moscow: Mir, 1984.CrossRefGoogle Scholar
  31. Pokrovskii, O.M., Objective analysis of sea-surface temperature fields in Russia according to MODIS measurements (Terra), Issled. Zemli Kosmosa, 2005, no. 3, pp. 53–65.Google Scholar
  32. Poulain, P.-M., Warn-Varnas, A., and Niiler, P.P., Nearsurface circulation of the Nordic Seas as measured by Lagrangian drifters, J. Geophys. Res., 1996, vol. 101, pp. 18237–18258.CrossRefGoogle Scholar
  33. Radiolokatsiya poverkhnosti Zemli iz kosmosa (Radar Observations of the Earth’s Surface from Space), Mitnik, L.M. and Viktorov, S.V., Eds., Leningrad: Gidrometeoizdat, 1990.Google Scholar
  34. Raj, R.P., Chafik, L., Nilsen, J.E.Ø., Eldevik, T., and Halo, I., The Lofoten vortex of the Nordic Seas, Deep-Sea Res. I, 2015, vol. 96, pp. 1–14.CrossRefGoogle Scholar
  35. Rhein, M., Convection in the Greenland Sea, 1982–1993, J. Geophys. Res., 1996, vol. 101, no. C8, pp. 18183–12192. doi 10.1029/96JC01295CrossRefGoogle Scholar
  36. Romeiser, R., Ufermann, S., Androssov, A., Wehde, H., Mitnik, L., Kern, S., and Rubino, A., On the remote sensing of oceanic and atmospheric convection in the Greenland Sea by synthetic aperture radar, J. Geophys. Res., 2004, vol. 109, C03004. doi 10.1029/2003JC001975CrossRefGoogle Scholar
  37. Rossby, T., Ozhigin, V., Ivshin, V., and Bacon, S., An isopycnal view of the Nordic Seas hydrography with focus on properties of the Lofoten Basin, Deep-Sea Res. I, 2009, vol. 56, no. 11, pp. 1955–1971.CrossRefGoogle Scholar
  38. Samuelsen, A., Hjøllo, S.S., Johannessen, J.A., and Patel, R., Particle aggregation at the edges of anticyclonic eddies and implications for distribution of biomass, Ocean Sci., 2012, vol. 8, no. 3, pp. 389–400. doi 10.5194/os-8-389-2012CrossRefGoogle Scholar
  39. Sarafanov, A.A., Falina, A.S., and Sokov, A.V., Long-term changes in the characteristics and circulation of deep waters in the northern North Atlantic: The role of regional and external factors, Dokl. Earth Sci., 2013, vol. 450, no. 2, pp. 643–646.CrossRefGoogle Scholar
  40. Schott, G., Geographie des Atlantischen Ozeans, Hamburg: C. Boysen, 1942.Google Scholar
  41. Shapiro, G.I., On the synoptic variability of the upper oceanic layer, Okeanologiya, 1985, vol. 25, no. 5, pp. 733–739.Google Scholar
  42. Soelan, H. and Rossby, T., On the structure of the Lofoten Basin eddy, J. Geophys. Res., 2013, vol. 118, pp. 4201–4212. doi 10.1002/jgrc.20301CrossRefGoogle Scholar
  43. Voet, G., Quadfasel, D., Mork, K.A., and Søiland, H., The mid-depth circulation of the Nordic Seas derived from profiling float observations, Tellus, 2010, vol. 62, no. 4, pp. 516–529. doi 10.1111/j.1600-0870.2010.00444.xCrossRefGoogle Scholar
  44. Volkov, D.L., Belonenko, T.V., and Foux, V.R., Puzzling over the dynamics of the Lofoten Basin—a sub-Arctic hot spot of ocean variability, Geophys. Res. Lett., 2013, vol. 40, no. 4, pp. 738–743.CrossRefGoogle Scholar
  45. Zhurbas, V.M. and Kuz’mina, N.P., On the mixed spot spreading in a rotating stably stratified fluid, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 1981, vol. 17, no. 3, pp. 286–295.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. A. Alexeev
    • 1
  • V. V. Ivanov
    • 1
    • 2
    • 3
  • I. A. Repina
    • 3
    • 4
  • O. Yu. Lavrova
    • 4
  • S. V. Stanichny
    • 5
  1. 1.International Arctic Research CenterUniversity of AlaskaFairbanksUSA
  2. 2.Arctic and Antarctic Research InstituteSt. PetersburgRussia
  3. 3.Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia
  4. 4.Space Research InstituteRussian Academy of SciencesMoscowRussia
  5. 5.Marine Hydrophysical InstituteSevastopolRussia

Personalised recommendations