Izvestiya, Atmospheric and Oceanic Physics

, Volume 52, Issue 8, pp 841–852 | Cite as

Geophysical fields of a megalopolis

  • A. A. SpivakEmail author
  • D. N. Loktev
  • Yu. S. Rybnov
  • S. P. Soloviev
  • V. A. Kharlamov


A description of the Center of Geophysical Monitoring for Systematic Investigation of Negative Consequences for the Human Environment and Infrastructure of the City of Moscow Resulting from Natural and Technogenic Factors, which is part of the Institute of Geosphere Dynamics of the Russian Academy of Sciences (IGD RAS), is presented. The results of synchronous observations of the seismic vibrations, electric and acoustic fields, and atmospheric meteoparameters performed at the Center and in the Mikhnevo Geophysical observatory of IGD RAS situated outside of the zone of the Moscow influence are examined. It is shown that the megalopolis influence consists of an increase in the amplitudes of the physical fields, a change in their spectral composition, and the violation of natural periodicities. A technogenic component that has a considerable impact on the natural physical processes in the surface atmosphere is an important factor that characterizes a megalopolis.


megalopolis instrumental observations geophysical fields variation technogenic sources 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adushkin, V.V. and Spivak, A.A., Megapolis: the problem of geophysical fields, Nauka Rossii, 1995, no. 5, pp. 65–69.Google Scholar
  2. Adushkin, V.V., Solov’ev, S.P., and Budnikov, V.A., Lithospheric sources of aerosol pollution of the atmosphere, Geol. Geofiz., 1995a, vol. 36, no. 8, pp. 103–110.Google Scholar
  3. Adushkin, V.V, Spivak, A.A., Ovchinnikov, V.M., Solov’ev, S.P., and Spungin, V.G., Geoecological control over geophysical fields of a megapolis, Geoekologiya, 1995b, no. 2, pp. 44–56.Google Scholar
  4. Akhmetzyanov, I.M., Zinkin, V.N., Petreev, I.V., and Dragan, S.P., Hygienic assessment of the joint effect of noise and infrasound on the body of military personnel, Voen.-Med. Zh., 2011, vol. 332, no. 11, pp. 44–50.Google Scholar
  5. Alekseeva, N.T., Fedorov, V.P., and Baibakov, S.E., Response of neurons of different CNS sectors to electromagnetic field effect, in Elektromagnitnoe pole i zdorov’e cheloveka: Materaly 2-i Mezhdunarodnoi konferentsii “Problemy elektromagnitnoi bezopasnosti cheloveka. Fundamental’nye i prikladnye issledovaniya”, g. Moskva, 20–24 sentyabrya 1999 g. (Electromagnetic Field and Human Health: Proceedings of the Second International Conference “Problems of Human Electromagnetic Safety. Fundamental and Applied Research”, Moscow, September 20–24, 1999), Moscow, 1999, pp. 47–48.Google Scholar
  6. Belyaev, G.G., Chmyrev, V.M., Kleimenova, N.G., and Kozyreva, O.V., Ultra-low-frequency electromagnetic background of a megapolis (Moscow), Geomagn. Aeron. (Engl. Transl.), 2003, vol. 43, no. 5, pp. 650–653.Google Scholar
  7. Binhi, V.N. and Savin, A.V., Effects of weak magnetic fields on biological systems: Physical aspects, Phys.-Usp., 2003, vol. 46, no. 3, pp. 259–292.CrossRefGoogle Scholar
  8. Burlakova, E.B., The low-dose effect, Vestn. Ross. Akad. Nauk, 1994, vol. 64, no. 5, pp. 425–431.Google Scholar
  9. Button, K., City management and urban environmental indicators, Ecol. Econ., 2012, vol. 40, no. 2, pp. 217–233.CrossRefGoogle Scholar
  10. Ekologiya cheloveka v izmenyayushchemsya mire (Human Ecology in the Changing World), Yekaterinburg: UrO RAN, 2008.Google Scholar
  11. Geoekologicheskie problemy Novoi Moskvy (Geoecological Problems of New Moscow), Koshkarev, A.V., Likhachev, E.A., and Tishkov, A.A., Eds., Moscow: Media-Press, 2013.Google Scholar
  12. Gostintsev, Yu.A., Ivanov, E.A., Kopylov, N.I., and Shatskikh, Yu.V., Wave Disturbances in the atmosphere during large fires, Fiz. Goreniya Vzryva, 1985, vol. 19, no. 4, pp. 62–64.Google Scholar
  13. Grimalsky, V.V., Hayakawa, M., Kochevaya, S.V., Burlak, G.N., and Sanchez-Modragon, J., Mexico City as seismic resonator, in Seismoelectromagnetics: Lithosphere–Atmosphere–Ionosphere Coupling, Hayakawa, M. and Molchanov, O.A., Eds.,Tokyo, 2002, pp. 87–89.Google Scholar
  14. Hofman, J., Leferbure, W., Janssen, S., Nuyts, S., Mattheyses, L., and Samson, R., Increasing the spatial resolution of air quality assessments in urban areas: A comparison of biomagnetic monitoring and urban scale modeling, Atmos. Environ., 2014, vol. 92, pp. 130–140.CrossRefGoogle Scholar
  15. Ivanova, T.E., Quality of life and safety of urban environment, Chrezvychainye Situatsii: Prom. Ekol. Bezop., 2013, nos. 1–2, pp. 135–149.Google Scholar
  16. Jamieson, K.S., Apsimon, H.M., Jamieson, S.S., Bell, J.N.B., and Yost, M.G., The effects of electric fields on charged molecules and particles in individual microenvironments, Atmos. Environ., 2007, vol. 41, no. 25, pp. 5224–5235.CrossRefGoogle Scholar
  17. Kolesnik, A.G., Electromagnetic background and its role in the problem of environmental protection and human ecology, Izv. Vyssh. Uchebn. Zaved., Fiz., 1998, no. 8, pp. 102–112.Google Scholar
  18. Kolesnik, A.G., Kolesnik, S.A., and Pobachenko, S.V., Elektromagnitnaya ekologiya (Electromagnetic Ecology), Tomsk: TML, 2009.Google Scholar
  19. Kolesnik, A.G., Pobachenko, S.V., and Solov’ev, A.V., Estimation of contingency of parameters of human EEG and background infrasonic vibrations of pressure revealed in monitoring studies, Izv., Atmos. Ocean. Phys., 2013, vol. 49, no. 8, pp. 812–818.CrossRefGoogle Scholar
  20. Koridalin, V.E., Kuz’mina, N.V., Osika, V.I., et al., Seismic noises of industrial towns, Dokl. Akad. Nauk SSSR, 1985, vol. 280, no. 5, pp. 1094–1097.Google Scholar
  21. Krasovskii, V.I., Potapov, B.P., Semenov, A.I., et al., Internal gravity waves near the mesopause: Results of hydroxyl emission studies, Polyarn. Siyaniya Svechenie Nochnogo Neba, 1978, no. 26, pp. 5–27.Google Scholar
  22. Le-Qing, W. and Dickman, J.D., Neural correlates of a magnetic sense, Science, 2012, vol. 336, pp. 1054–1057.CrossRefGoogle Scholar
  23. Lednev, V.V., Biological effects of ultra weak variable magnetic fields: Identification of primary targets, in Modelirovanie geofizicheskikh protsessov (Modeling of Geophysical Processes), Moscow: OIFZ RAN, 2003, pp. 130–136.Google Scholar
  24. Martynyuk, V.S., Tseisler, Yu.V., and Temur’yants, N.A., Interference of the mechanisms of influence that weak extremely low-frequency electromagnetic fields have on the human body and animals, Izv., Atmos. Ocean. Phys., 2012, vol. 48, no. 8, pp. 832–846.CrossRefGoogle Scholar
  25. Moskva: geologiya i gorod (Moscow: Geology and the City), Osipov, V.I. and Medvedev, O.P., Eds., Moscow: Moskovskie uchebniki i kartolitografiya, 1997.Google Scholar
  26. Nazarov, D.V. and Akhmetzyanov, V.R., Medical and psychological impact of infrasound on human body, Vestn. RUDN, Ser. Ekol. Bezop. Zhiznedeyat., 2005, no. 1, pp. 123–126.Google Scholar
  27. Osipov, V.I., Geological conditions for the urban development of Moscow, Geoekologiya, 2006, no. 2, pp. 99–114.Google Scholar
  28. Pathak, V., Tripathi, B.D., and Mishra, V., Evaluation of traffic noise pollution and attitudes of exposed individuals in working place, Atmos. Environ., 2008, vol. 42, pp. 3892–3898.CrossRefGoogle Scholar
  29. Ptitsina, N.G., Villoresi, G., Dorman, L.I., Iucci, N., and Tyasto, M.I., Natural and man-made low-frequency magnetic fields as a potential health hazard, Phys.-Usp., 1998, vol. 41, no. 7, pp. 687–710.CrossRefGoogle Scholar
  30. Rapoport, S.I. and Breus, T.K., Melatonin as one of the important factors of influence of weak natural electromagnetic fields on patients of hypertensive and ischemic heart diseases (part 1), Klin. Med., 2011, vol. 89, no. 3, pp. 9–14.Google Scholar
  31. Riahi, N. and Gerstoft, P., The seismic traffic footprint: Tracking trains, aircraft, and cars seismically, Geophys. Res. Lett., 2011, vol. 42, pp. 2563–3068.Google Scholar
  32. Seismologicheskie nablyudeniya na territorii Moskvy i Moskovskoi oblasti (Seismologic Observations in Moscow and Moscow Region), Obninsk: GS RAN, 2012.Google Scholar
  33. Semenov, A.V., Justification of maximum allowable levels of industrial frequency magnetic field induction to humans, Izv. Tomsl. Politekhn. Univ., 2012, vol. 321, no. 1, pp. 197–200.Google Scholar
  34. Shuleikin, V.N., Water vapor, atmospheric electricity, and radon transfer to the near-surface soil layers and the atmosphere, Izv., Atmos. Ocean. Phys., 2015, vol. 51, no. 7, pp. 688–692.CrossRefGoogle Scholar
  35. Spivak, A.A., Volosov, D.N., Loktev, D.N., et al., Organization and first results of observations over physical fields in Moscow, in Dinamicheskie protsessy v geosferakh (Dynamical Processes in Geospheres), Moscow: GEOS, 2014, vol. 6, pp. 106–115.Google Scholar
  36. Tuzhilkin, D.A., Apryatkina, M.L., and Borodin, A.S., Impact of variations in physical fields of the environment on the functioning of the human cardiovascular system, in Fizika okruzhayushchei sredy (Environmental Physics), Tomsk: Tomsk. Univ., 2011, pp. 285–288.Google Scholar
  37. Utkin, V.I., Tyagunov, D.S., Sokol-Kutylovskii, O.L., and Senina, T.E., Environmental pollution in relation to the influence of electromagnetic field at frequencies of 0.05–20 Hz, Geoekologiya, 2010, no. 4, pp. 327–335.Google Scholar
  38. Zenchenko, T.A., Medvedeva, A.A., Khorseva, N.I., and Breus, T.K., Synchronization of human heart-rate indicators and geomagnetic field variations in the frequency range of 0.5–3.0 MHz, Izv., Atmos. Ocean. Phys., 2014, vol. 50, no. 7, pp. 736–744.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. A. Spivak
    • 1
    Email author
  • D. N. Loktev
    • 1
  • Yu. S. Rybnov
    • 1
  • S. P. Soloviev
    • 1
  • V. A. Kharlamov
    • 1
  1. 1.Institute of Geosphere DynamicsRussian Academy of SciencesMoscowRussia

Personalised recommendations