Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 52, Issue 5, pp 542–549 | Cite as

Operational system for diagnosis and forecast of hydrophysical characteristics of the Black Sea

  • G. K. Korotaev
  • Yu. B. Ratner
  • M. V. Ivanchik
  • A. L. Kholod
  • A. M. Ivanchik
Article

Abstract

The automatic system of operational forecasting of the Black Sea state which functions at the Marine Hydrophysical Institute is presented. Principles of the system construction are considered; the marine environment models used for forecasting, the data streams required for the system functioning, and tools for validating and visualizing the results of sea-state calculations are described. Some examples of investigating a number of processes and phenomena in the Black Sea are given.

Keywords

automatic system modeling monitoring hydrodynamic model biogeochemical model biooptic model diagnosis forecast validation visualization THREDDS server spectrum dynamics thermohaline fields 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. G. Demyshev, Numerical Energy-Balanced Model of Baroclinic Currents in an Ocean with a C-Grid Rough Bottom (IVM, Moscow, 1992) [in Russian].Google Scholar
  2. 2.
    G. L. Mellor and T. Yamada, “Development of a turbulence close model for geophysical fluid problems,” Rev. Geophys.: Space Phys. 20, 851–875 (1982).CrossRefGoogle Scholar
  3. 3.
    S. G. Demyshev, “A numerical model of online forecasting Black Sea currents,” Izv., Atmos. Ocean. Phys. 48 (1), 120–132 (2012).CrossRefGoogle Scholar
  4. 4.
    V. L. Dorofeev, “Assimilation of satellite measurements of surface temperature of the Black Sea in a circulation model,” in Ecological Safety of Coastal and Shelf Zones and Integrated Use of Shelf Resources. Collection of Scientific Papers, Vol. 11 (EKOSIGidrofizika, Sevastopol, 2004), pp. 24–30 [in Russian].Google Scholar
  5. 5.
    G. K. Korotaev, O. A. Saenko, and C. J. Koblinsky, “Satellite altimetry observations of the Black Sea level,” J. Geophys. Res. 106 (C1), 917–933 (2001).CrossRefGoogle Scholar
  6. 6.
    V. L. Dorofeev, “Modeling of decadal variability of the Black Sea ecosystem,” Morsk. Gidrofiz. Zh., No. 6, 71–81 (2009).Google Scholar
  7. 7.
    T. Oguz and B. Salihoglu, “Simulation of eddy-driven phytoplankton production in the Black Sea,” Geophys. Res. Lett. 27 (14), 2125–2128 (2000).CrossRefGoogle Scholar
  8. 8.
    T. Oguz, H. W. Ducklow, J. E. Purcell, and P. Malanotte- Rizzoli, “Modeling the response of top–down control exerted by gelatinous carnivores on the Black Sea pelagic food web,” J. Geophys. Res. 106, 4543–4564 (2001).CrossRefGoogle Scholar
  9. 9.
    G. K. Korotaev, T. Oguz, V. L. Dorofeev, et al., “Development of Black Sea nowcasting and forecasting system,” Ocean Sci. 7, 1–21 (2011).CrossRefGoogle Scholar
  10. 10.
    S. Sathyendranath and T. Platt, “The spectral irradiance field at the surface and in the interior of the ocean: A model for applications in the oceanography and remote sensing,” J. Geophys. Res. 93 (C8), 9270–9280 (1988).Google Scholar
  11. 11.
    T. Ya. Churilova, V. V. Suslin, and Kh. M. Sosik, “Parameterization of light absorption by main optical active components in the Black Sea,” Ecological Safety of Coastal and Shelf Zones and Integrated Use of Shelf Resources. Collection of Scientific Papers, Vol. 16 (EKOSI-Gidrofizika, Sevastopol, 2008), pp. 190–201 [in Russian].Google Scholar
  12. 12.
    V. S. Suetin, V. V. Suslin, S. N. Korolev, and A. A. Kucheryavyi, “Estimation of the variability of optical properties of water in the Black Sea according to data of the SeaWiFS satellite instrument,” Morsk. Gidrofiz. Zh., No. 6, 44–54 (2002).Google Scholar
  13. 13.
    A. M. Ivanchik, “Control of automatic marine forecast systems,” in Current Problems in the humanities and natural sciences: Proceedings of the XX International Scientific and Practical Conference of October 2–3, 2014 (Institut strategicheskikh issledovanii, Moscow, 2014), pp. 56–61 [in Russian].Google Scholar
  14. 14.
    A. M. Ivanchik and M. V. Ivanchik, “Procedures of control of automatic marine forecast systems. in Integration of Science and Practice as a Mechanism of Efficient Progress of Modern Society: Proceedings of the XVI International Scientific and Practical Conference, Moscow, June 30, 2015 (Institut strategicheskikh issledovanii, Moscow, 2015), pp. 52–55 [in Russian].Google Scholar
  15. 15.
    Yu. B. Ratner and A. L. Kholod, “The structure of the system of validation of the diagnostic and prognostic state of the Black Sea,” in Ecological Safety of Coastal and Shelf Zones and Integrated Use of Shelf Resources. Collection of Scientific Papers, Vol. 19 (EKOSIGidrofizika, Sevastopol, 2009), pp. 199–202 [in Russian].Google Scholar
  16. 16.
    http://www.unidata.ucar.edu/downloads/thredds/index. jsp.Google Scholar
  17. 17.
    http://www.R-project.orgGoogle Scholar
  18. 18.
    https://cran.r-project.org/web/packages/oce/index.jsp.Google Scholar
  19. 19.
    V. M. Zhurbas, A. G. Zatsepin, Yu. V. Grigor’eva, et al., “Water circulation and characteristics of currents of different scales in the upper layer of the Black Sea from drifter data,” Oceanology (Engl. Transl.) 44 (1), 30–43 (2004).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • G. K. Korotaev
    • 1
  • Yu. B. Ratner
    • 1
  • M. V. Ivanchik
    • 1
  • A. L. Kholod
    • 1
  • A. M. Ivanchik
    • 1
  1. 1.Marine Hydrophysical InstituteRussian Academy of SciencesSevastopolRussia

Personalised recommendations