Izvestiya, Atmospheric and Oceanic Physics

, Volume 52, Issue 4, pp 376–385 | Cite as

Simulation of the spatiotemporal variability of the World Ocean sea surface hight by the INM climate models

Article

Abstract

The results of simulations of the World Ocean sea surface hight (SSH) in by various versions of the Climate Model of the Institute of Numerical Mathematics, Russian Academy of Sciences, are compared with the CNES-CLS09 fields of the mean dynamic topography (deviation of the ocean level from the geoid). Three models with different ocean blocks are considered which slightly differ in numerical schemes and have various horizontal spatial resolution, i.e., the INMCM4 model, which participated in the Climate Model Intercomparison Project (CMIP Phase 5, resolution of 1° × 1/2°); the INMCM5 model, which participates in the next project, CMIP6 (resolution of 1/2° × 1/4°); and the advanced INMCM-ER eddy-resolving model (resolution of 1/6° × 1/8°). It is shown that an increase in the spatial resolution improves the reproduction of ocean currents (with Agulhas and Kuroshio currents as examples) and their variability. A probable cause of relatively high errors in the reproduction of the SSH of Southern and Indian oceans is discussed.

Keywords

World Ocean sea surface hight INM climate model CMIP5 CMIP6 eddy-resolving ocean model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Bryan, “A numerical method for study of the circulation of the world ocean,” J. Comput. Phys. 4, 347–376 (1969).CrossRefGoogle Scholar
  2. 2.
    V. B. Zalesny, Modeling Large-Scale Motions in the World Ocean (Department of Numerical Mathematics, USSR Acad. Sci., Moscow, 1984) [in Russian].Google Scholar
  3. 3.
    R. C. Malone, R. D. Smith, and J. K. Dukowicz, “New numerical methods for ocean modeling on parallel computers,” Los Alamos Sci., No. 21, 210–214 (1993).Google Scholar
  4. 4.
    A. S. Sarkisyan, Numerical Analysis and Prediction of Sea Currents (Gidrometeoizdat, Leningrad, 1977) [in Russian].Google Scholar
  5. 5.
    F. W. Landerer, P. J. Gleckler, and T. Lee, “Evaluation of CMIP5 dynamic sea surface height multi-model simulations against satellite observations,” Clim. Dyn. 43, 1271–1283 (2014). doi 10.1007/s00382-013-1939-xCrossRefGoogle Scholar
  6. 6.
    M.-H. Rio and F. Hernandez, “A mean dynamical topography computed over the world ocean from altimetry, in-situ measurements and a geoid model,” J. Geophys. Res. 109, C12032 (2004). doi 10.1029/ 2003JC002226CrossRefGoogle Scholar
  7. 7.
    M.-H. Rio, P. Schaeffer, F. Hernandez, et al., “The estimation of the ocean mean dynamic topography through the combination of altimetric data, in-situ measurements and GRACE geoid: From global to regional studies,” in Proceedings of the GOCINA International Workshop (Luxembourg, 2005).Google Scholar
  8. 8.
    M.-H. Rio, P. Schaeffer, G. Moreaux, et al., “A new mean dynamic topography computed over the global ocean from GRACE data altimetry and in-situ measurements,” in OceanObs09 Symposium, 21–25 September, 2009 (Venice, 2009). http://wwwavisooceanobscom/ fr/donnees/produits/produits-auxiliaires/mdt/indexhtml.Google Scholar
  9. 9.
    N. Maximenko, P. Niiler, L. Centurioni, et al., “Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques,” J. Atmos. Ocean. Technol. 26 (9), 1175 (2009). doi 10.1175/2009JTECHO672.1CrossRefGoogle Scholar
  10. 10.
    N. A. Dyansky, V. Ya. Galin, A. V. Gusev, et al., “The model of the earth system developed at the INM RAS,” Russ. J. Mumer. Anal. Math. Modell. 25 (5), 419–429 (2010).Google Scholar
  11. 11.
    V. B. Zalesny, G. I. Marchuk, V. I. Agoshkov, et al., “Numerical simulation of large-scale ocean circulation based on the multicomponent splitting method,” Russ. J. Numer. Anal. Math. Modell. 25 (6), 581–609 (2010).CrossRefGoogle Scholar
  12. 12.
    E. M. Volodin, N. A. Diansky, and A. V. Gusev, “Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations,” Izv., Atmos. Ocean. Phys. 46 (4), 414–431 (2010).CrossRefGoogle Scholar
  13. 13.
    E. M. Volodin, N. A. Diansky, and A. V. Gusev, “Simulation and prediction of climate changes in the 19th to 21st centuries with the Institute of Numerical Mathematics, Russian Academy of Sciences, model of the Earth’s climate system,” Izv., Atmos. Ocean. Phys. 49 (4), 347–366 (2013).CrossRefGoogle Scholar
  14. 14.
    K. M. Terekhov, E. M. Volodin, and A. V. Gusev, “Methods and efficiency estimation of parallel implementation of the sigma-model of general ocean circulation,” Russ. J. Numer. Anal. Math. Modell. 26 (2), 189–208 (2011).CrossRefGoogle Scholar
  15. 15.
    A. J. S. Meijers, E. Shuckburgh, N. Bruneau, et al., “Representation of the Antarctic circumpolar current in the CMIP5 climate models and future changes under warming scenarios,” J. Geophys. Res. 117, C12008 (2012). doi 10.1029/2012JC008412CrossRefGoogle Scholar
  16. 16.
    T. Kuhlbrodt, R. Smith, Z. Wang, and J. Gregory, “The influence of eddy parameterizations on the transport of the Antarctic circumpolar current in coupled climate models,” Ocean Modell. 52–53, 1–8 (2012). doi 10.1016/jocemod.2012.04.006CrossRefGoogle Scholar
  17. 17.
    C. W. Boning, A. Dispert, M. Visbeck, et al., “The response of the Antarctic circumpolar current to recent climate change,” Nat. Geosci. 1 (12), 864 (2008). doi 10.1038/ngeo362CrossRefGoogle Scholar
  18. 18.
    P. R. Gent and J. C. McWilliams, “Isopycnal mixing in ocean circulation models,” J. Phys. Oceanogr. 20 (1), 150–155 (1990).CrossRefGoogle Scholar
  19. 19.
    N. G. Iakovlev, “On the simulation of temperature and salinity fields in the Arctic Ocean,” Izv., Atmos. Ocean. Phys. 48 (1), 86–101 (2012).CrossRefGoogle Scholar
  20. 20.
    M. Visbeck, J. Marshall, T. Haine, and M. Spall, “Specification of eddy transfer coeffcients in coarse resolution ocean circulation models,” J. Phys. Oceanogr. 27, 381–402 (1997).CrossRefGoogle Scholar
  21. 21.
    A. Beckmann and R. Doscher, “A method for improved representation of dense water spreading over topography in geopotential-coordinate models,” J. Phys. Oceanogr. 27 (4), 581–591 (1997).CrossRefGoogle Scholar
  22. 22.
    J.-M. Campin and H. Goosse, “Parameterization of density-driven downsloping flow for a coarse-resolution ocean model in z-coordinate,” Tellus 51A, 412–430 (1999).CrossRefGoogle Scholar
  23. 23.
    R. Timmermann and A. Beckmann, “Parameterization of vertical mixing in the Weddell Sea,” Ocean Modell., No. 6, 83–100 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • N. G. Iakovlev
    • 1
  • E. M. Volodin
    • 1
    • 2
  • A. S. Gritsun
    • 1
  1. 1.Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations