Izvestiya, Atmospheric and Oceanic Physics

, Volume 52, Issue 4, pp 335–340 | Cite as

Main directions in the simulation of physical characteristics of the World Ocean and seas

Article

Abstract

A brief analysis of the oceanographic papers printed in this issue is presented. For convenience of the reader, the paper by K. Bryan, a prominent scientist and expert in modeling the physical characteristics of the ocean, is discussed in detail. The remaining studies are described briefly in several sections: direct prognostic modeling, diagnosis–adaptation, four-dimensional analysis, and operational oceanography. At the end of the study, we separately discuss the problem of the reproduction of coastal intensification of temperature, salinity, density, and currents. We believe that the quality of the simulation results can be best assessed in terms of the intensity of coastal currents. In conclusion, this opinion is justified in detail.

Keywords

ocean modeling baroclinicity adaptation of characteristics four-dimensional analysis operational oceanology 

References

  1. 1.
    K. Bryan, “Influence of bathimetry on oceanic circulation: a review on the basis of observations in recent decades,” Izv., Atmos. Ocean. Phys. 52 (4) (2016).Google Scholar
  2. 2.
    V. P. Dymnikov, “Dynamics of a two-dimensional ideal incompressible fluid and Casimirs,” Izv., Atmos. Ocean. Phys. 52 (4) (2016).Google Scholar
  3. 3.
    A. E. Aloyan, A. N. Ermakov, and V. O. Arutyunyan, “The role of sulfate aerosol in the formation of cloudiness over the sea and polar stratospheric clouds,” Izv., Atmos. Ocean. Phys. 52 (4) (2016).Google Scholar
  4. 4.
    K. V. Ushakov, T. B. Grankina, and R. A. Ibraev, “Modeling the North Atlantic water circulation in the framework of the CORE-II experiment,” Izv., Atmos. Ocean. Phys. 52 (4) (2016).Google Scholar
  5. 5.
    N. G. Iakovlev, E. M. Volodin, and A. S. Gritsun, “Reproduction of the World Ocean level using the INM RAS spatiotemporal climate model,” Izv., Atmos. Ocean. Phys. 52 (4) (2016).Google Scholar
  6. 6.
    S. G. Demyshev and O. A. Dymova, “Analysis of intraannual variability of energetic characteristics of the Black Sea circulation,” Izv., Atmos. Ocean. Phys. 52 (4) (2016).Google Scholar
  7. 7.
    T. Pohlmann and J. Sündermann, “The JEBAR term: Model calculations for the northeastern shelf of the Atlantic Occean (The JEBAR term: Model calculations for the northeastern Atlantic shelf),” Izv., Atmos. Ocean. Phys. 52 (4) (2016).Google Scholar
  8. 8.
    X. Guo, H. Hukuda, Y. Miyazawa, et al., “A triply nested ocean model for simulating the Kuroshio— Roles of horizontal resolution on JEBAR,” J. Phys. Oceanogr. 33 (1), 146–169 (2003).CrossRefGoogle Scholar
  9. 9.
    A. S. Sarkisyan and J. Sündermann, Modelling Ocean Climate Variability (Springer, Heidelberg, 2009).CrossRefGoogle Scholar
  10. 10.
    K. V. Lebedev, A. S. Sarkisyan, and O. P. Nikitin, “Comparative analysis of the North Atlantic surface circulation reproduced by three different methods,” Izv., Atmos. Ocean. Phys. 52 (4) (2016).CrossRefGoogle Scholar
  11. 11.
    J. I. Antonov, D. Seidov, T. P. Boyer, et al., World Ocean Atlas, Vol. 2: Salinity, Ed. by S. Levitus (NOAA Atlas NESDIS 69, US Government Printing Office, Washington, D.C., 2010).Google Scholar
  12. 12.
    G. K. Korotaev, A. S. Sarkisyan, V. V. Knysh, and P. N. Lishaev, “Reanalysis of seasonal and interannual variability of Black Sea fields in 1993–2012,” Izv., Atmos. Ocean. Phys. 52 (4) (2016).CrossRefGoogle Scholar
  13. 13.
    V. B. Zalesnyi, V. I. Agoshkov, V. P. Shutyaev, et al., “Problems of numerical simulation of ocean hydrodynamics with variational assimilation of observation data,” Izv., Atmos. Ocean. Phys. 52 (4) (2016).CrossRefGoogle Scholar
  14. 14.
    A. A. Zelenko, R. M. Vil’fand, Yu. D. Resnyansky, et al., “Oceanographic data assimilation system and retrospective analysis of hydrophysical fields of the World Ocean,” Izv., Atmos. Ocean. Phys. 52 (4) (2016).CrossRefGoogle Scholar
  15. 15.
    W. H. Munk, “On the wind-driven ocean circulation,” J. Meteorol. 7 (2), 79–93 (1950).CrossRefGoogle Scholar
  16. 16.
    A. S. Sarkisyan, “Calculation of stationary wind currents in the ocean,” Izv. Akad. Nauk SSSR, Geofiz., No. 6, 554–561 (1954).Google Scholar
  17. 17.
    A. S. Sarkisyan, “A view of progress in the numerical modeling of physical characteristics of the world ocean in the light of sixty-year experience,” Izv., Atmos. Ocean. Phys. 51 (3), 320–336 (2015).CrossRefGoogle Scholar
  18. 18.
    R. A. Ibraev, K. V. Ushakov, and R. N. Khabeev, “Eddy-resolving 1/10° model of the World Ocean,” Izv., Atmos. Ocean. Phys. 48 (1), 37–46 (2012).CrossRefGoogle Scholar
  19. 19.
    A. S. Sarkisyan, Basics of the Theory and Computation of Oceanic Currents (Gidrometeoizdat, Leningrad, 1966) [in Russian].Google Scholar
  20. 20.
    G. I. Marchuk and A. S. Sarkisyan, Mathematical Modeling of Ocean Circulation (Nauka, Moscow, 1988) [in Russian].CrossRefGoogle Scholar
  21. 21.
    A. S. Sarkisyan, Modeling of Ocean Dynamics (Gidrometeoizdat, St. Petersburg, 1991) [in Russian].Google Scholar
  22. 22.
    R. A. Ibraev and G. S. D’yakonov, “Modeling of the ocean dynamics under large fluctuations of the level,” Izv., Atmos. Ocean. Phys. 52 (4) (2016).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Hydrometeorological Research Center of the Russian FederationMoscowRussia
  3. 3.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  4. 4.Moscow State UniversityMoscowRussia

Personalised recommendations