Izvestiya, Atmospheric and Oceanic Physics

, Volume 52, Issue 4, pp 410–417 | Cite as

Comparative analysis of the North Atlantic surface circulation reproduced by three different methods

Article

Abstract

Calculation results are presented for long-term mean annual surface currents in the North Atlantic based on direct drifter measurements and numerical experiments with the ocean general circulation model using both climatic arrays of hydrological data World Ocean Atlas 2009 and Argo profiling data. The calculations show that the technique suggested for model calculations of oceanographic characteristics of the World Ocean with the use of Argo data significantly improves the climatic fields of the temperature and salinity even on a coarse grid. The comparison of the model calculation results with drifter data showed that the temperature and salinity fields found from Argo data with the use of data variational interpolation on a regular grid allow the calculation of realistic currents and can be successfully used as initial conditions in hydrodynamic models of the ocean dynamics.

Keywords

ocean current circulation climate simulation Argo drifter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Lumpkin and M. Pazos, “Measuring surface currents with Surface Velocity Program drifters: The instrument, its data and some recent results,” in Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics, Ed. by A. Griffa, (Cambridge Univ. Press, Cambridge, 2007), pp. 39–67.CrossRefGoogle Scholar
  2. 2.
    O. P. Nikitin, S. Y. Kasyanov, and G. V. Muzyka, “World ocean surface currents visualization software,” in Proceedings of the 3rd International Workshop on Computer Science and Information Technologies CSIT'2001 (Ufa, 2001), Vol. 2, pp. 32–41.Google Scholar
  3. 3.
    O. P. Nikitin, S. Yu. Kasyanov, and G. V. Muzyka, “The computer information-reference system ‘Surface Currents of the World Ocean’,” Proc. State Oceanogr. Inst., issue 209, 75–89 (2005) [in Russian].Google Scholar
  4. 4.
    O. P. Nikitin, “Storage, processing and visualization data system of drifter observations of surface currents in the World Ocean,” Russ. J. Earth. Sci. 12 (5), ES5002 (2012). doi 10.2205/2012ES000521CrossRefGoogle Scholar
  5. 5.
    K. V. Lebedev, H. Yoshinari, N. A. Maximenko, and P. W. Hacker, “YoMaHa'07: Velocity data assessed from trajectories of Argo floats at parking level and at the sea surface,” IPRC Tech. Note No. 4 (2) (2007).Google Scholar
  6. 6.
    Y. N. Sasaki, N. Schneider, N. Maximenko, and K. Lebedev, “Observational evidence for propagation of decadal spiciness anomalies in the North Pacific,” Geophys. Res. Lett. 37, L07708 (2010). doi 10.1029/ 2010GL042716CrossRefGoogle Scholar
  7. 7.
    R. A. Locarnini, A. V. Mishonov, J. I. Antonov, et al., World Ocean Atlas 2009, Vol. 1: Temperature, NOAA Atlas NESDIS 68, Ed. by S. Levitus (U. S. Government Printing Office, Washington, D.C., 2010).Google Scholar
  8. 8.
    J. I. Antonov, D. Seidov, T. P. Boyer, et al., World Ocean Atlas 2009, Vol. 2: Salinity, NOAA Atlas NESDIS 69, Ed. by S. Levitus (U. S. Government Printing Office, Washington, D.C., 2010).Google Scholar
  9. 9.
    E. I. Baranov, The Structure and Dynamics of Gulfstream Waters (Gidrometeoizdat, Moscow, 1988) [in Russian].Google Scholar
  10. 10.
    E. I. Baranov, A. V. Kolinko, and V. S. Regentovskii, “The hydrological structure and thermodynamics of waters of the Newfoundland energy-active zone,” in Large-Scale Ocean–Atmosphere Interaction and Formation of Hydrophysical Fields, Ed. by S. S. Lappo (Gidrometeoizdat, Moscow, 1989), pp. 102–108. [in Russian].Google Scholar
  11. 11.
    G. Reverdin, P. P. Niiler, and H. Valdimarsson, “North Atlantic Ocean surface currents,” J. Geophys. Res. 108 (C1), 3002 (2003). doi 10.1029/2001JC001020CrossRefGoogle Scholar
  12. 12.
    R. D. Smith, M. E. Maltrud, F. O. Bryan, and M. W. Hecht, “Numerical simulation of the North Atlantic Ocean at 1/10°,” J. Phys. Oceanogr. 30, 1532–1561 (2000).CrossRefGoogle Scholar
  13. 13.
    A. S. Sarkisyan and Yu. L. Demin, “A semidiagnostic method of sea currents calculation,” in Large-Scale Oceanographic Experiments in the WCRP (Tokyo, 1983), 2 (1), 201–214.Google Scholar
  14. 14.
    A. S. Sarkisyan, “On some problems and results of ocean modeling,” Oceanology (Engl. Transl.) 36 (5), 607–617 (1996).Google Scholar
  15. 15.
    Yu. L. Demin and R. A. Ibraev, Numerical model of calculation of currents and sea surface height in multiply connected domains of the ocean, Preprint No. 183 (Department of Numerical Mathematics, USSR Acad. Sci., Moscow, 1988) [in Russian].Google Scholar
  16. 16.
    R. A. Ibraev, “Reconstruction of climatic characteristics of Gulfstream Current,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 29 (6), 803–814 (1993).Google Scholar
  17. 17.
    K. G. Grigor’yan, Yu. A. Ivanov, K. V. Lebedev, and A. S. Sarkisyan, “Average annual climate of the ocean. Part 1: World Ocean circulation,” Izv., Atmos. Ocean. Phys. 34 (4), 417–428 (1998).Google Scholar
  18. 18.
    A. S. Sarkisyan, Numerical Analysis and Prediction of Sea Currents (Gidrometeoizdat, Leningrad, 1977) [in Russian].Google Scholar
  19. 19.
    R. D. Smith, J. K. Dukowicz, and R. C. Malone, “Parallel ocean general circulation modeling,” Phys. D 60, 38–61 (1992).CrossRefGoogle Scholar
  20. 20.
    J. K. Dukowicz, R. D. Smith, and R. C. Malone, “A reformulation and implementation of the Bryan–Cox–Semtner ocean model on the connection machine,” J. Atmos. Ocean. Technol. 10, 195–208 (1993).CrossRefGoogle Scholar
  21. 21.
    Yu. L. Demin, Yu. A. Ivanov, K. V. Lebedev, and I. G. Usychenko, “Testing of numerical model of ocean dynamics based on the results of Megapoligon-87 experiment,” in Megapoligon Experiment (Nauka, Moscow, 1992), pp. 319–330 [in Russian].Google Scholar
  22. 22.
    M. G. Bulushev and A. S. Sarkisyan, “Energetics at the initial stage of the adjustment of equatorial currents,” Izv., Atmos. Ocean. Phys. 32 (5), 552–563 (1996).Google Scholar
  23. 23.
    Yu. A. Ivanov, K. V. Lebedev, and A. S. Sarkisyan, “Generalized hydrodynamic adjustment method (GHDAM),” Izv., Atmos. Ocean. Phys. 33 (6), 752–757 (1997).Google Scholar
  24. 24.
    K. V. Lebedev, “Average annual climate of the ocean. Part 2: Integral characteristics of the world ocean climate (mass, heat, and salt transports),” Izv., Atmos. Ocean. Phys. 35 (1), 87–96 (1999).Google Scholar
  25. 25.
    Yu. A. Ivanov and K. V. Lebedev, “Interseasonal variability of the world ocean climate,” Izv., Atmos. Ocean. Phys. 36 (1), 119–130 (2000).Google Scholar
  26. 26.
    Yu. A. Ivanov and K. V. Lebedev, “Integral average monthly characteristics of the world ocean climate,” Izv., Atmos. Ocean. Phys. 36 (2), 244–252 (2000).Google Scholar
  27. 27.
    K. V. Lebedev and M. I. Yaremchuk, “A diagnostic study of the Indonesian Throughflow,” J. Geophys. Res. 105 (C5), 11243–11258 (2000).CrossRefGoogle Scholar
  28. 28.
    A. S. Sarkisyan, Modeling of Ocean Dynamics (Gidrometeoizdat, St. Petersburg, 1991) [in Russian].Google Scholar
  29. 29.
    D. P. Dee, S. M. Uppala, A. J. Simmons, et al., “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137, 553–597 (2011).CrossRefGoogle Scholar
  30. 30.
    K. V. Lebedev, “An Argo-based model for investigation of the global ocean (AMIGO),” Oceanology (Engl. Transl.) 56 (2), 172–181 (2016).Google Scholar
  31. 31.
    K. V. Lebedev, S. DeCarlo, P. W. Hacker, et al., “Argo products at the Asia-Pacific Data-Research Center,” Eos Trans. AGU 91 (26), Abstract IT25A–01 (2010).Google Scholar
  32. 32.
    M. O. Kurnosova and K. V. Lebedev, “Study of transport variations in the Kuroshio extension system at 35°N, 147°E based on the data of Argo floats and satellite altimetry,” Dokl. Earth Sci. 458 (1), 1154–1157 (2014).CrossRefGoogle Scholar
  33. 33.
    F. O. Bryan, M. W. Hecht, and R. D. Smith, “Resolution convergence and sensitivity studies with North Atlantic circulation models. Part 1: The western boundary current system,” Ocean Modell. 16 (3–4), 141–159 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • K. V. Lebedev
    • 1
  • A. S. Sarkisyan
    • 1
    • 2
    • 3
    • 4
  • O. P. Nikitin
    • 5
  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia
  3. 3.Hydrometeorological Center of RussiaMoscowRussia
  4. 4.Moscow State UniversityMoscowRussia
  5. 5.Zubov State Oceanographic InstituteMoscowRussia

Personalised recommendations