Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 52, Issue 2, pp 117–131 | Cite as

Research in dynamic meteorology in Russia in 2011–2014

  • M. V. Kurgansky
  • V. N. Krupchatnikov
Article

Abstract

This review outlines the most significant results of research in dynamic meteorology performed by Russian scientists in 2011–2014. It is part of the Russian National Report on Meteorology and Atmospheric Sciences submitted to the International Association of Meteorology and Atmospheric Sciences (IAMAS). The report was considered and approved at the 26th General Assembly of the International Union of Geodesy and Geophysics (IUGG).1 The review is followed by a list of key publications on dynamic meteorology of Russian scientists in 2011–2014.

Keywords

dynamic meteorology atmospheric dynamics mesoscale processes turbulence weather forecasting troposphere middle and upper atmosphere climate ecology mathematical modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. N. Lykosov and V. N. Krupchatnikov, “Some directions in the development of dynamic meteorology in Russia in 2007–2010,” Izv., Atmos. Ocean. Phys. 48 (3), 255–271 (2012).CrossRefGoogle Scholar
  2. 2.
    Turbulence, Atmospheric Dynamics, and Climate. Proceedings of the International Conference Commemorating Academician A. M. Obukhov (May 13–16, 2013), Ed. by G. S. Golitsyn, I. I. Mokhov, S. N. Kulichkov, M. V. Kurgansky, and O. G. Chkhetiani (GEOS, Moscow, 2014) [in Russian].Google Scholar
  3. 3.
    G. S. Golitsyn, Statistics and Dynamics of Natural Processes and Phenomena: Methods, Instrumentation, Results (Krasand, Moscow, 2012) [in Russian].Google Scholar
  4. 4.
    V. N. Lykosov, “Book review: G. S. Golitsyn Statistics and Dynamics of Natural Processes and Phenomena: Methods, Instrumentation, Results,” Izv. Ross. Akad. Nauk, Fiz. Atmos. Okeana 50 (1), 126–128 (2014).Google Scholar
  5. 5.
    S. B. Medvedev, “Geometric approximations for equations of rotating shallow water,” Vychisl. Tekhnol. 18 (1), 45–64 (2013).Google Scholar
  6. 6.
    V. P. Dymnikov, “The dimension of an attractor generated by equations of 2D viscous noncompressible liquid dynamics on a revolving sphere,” Dokl. Earth Sci. 447 (2), 1349–1350 (2012).CrossRefGoogle Scholar
  7. 7.
    A. Gritsun, “Statistical characteristics, circulation regimes and unstable periodic orbits of a barotropic atmospheric model,” Philos. Trans. R. Soc., A 371 (1991), 20120336–20120336 (2013).CrossRefGoogle Scholar
  8. 8.
    U. Achatz, U. Löbl, S. I. Dolaptchiev, and A. Gritsun, “Fluctuation–dissipation supplemented by nonlinearity: A climate-dependent subgrid-scale parameterization in low-order climate models,” J. Atmos. Sci. 70 (6), 1833–1846 (2013).CrossRefGoogle Scholar
  9. 9.
    A. Glazunov, V. Dymnikov, D. Kulyamin, and V. Lykosov, Mathematical modeling of the spectral structure of atmospheric turbulence, in Proceedings of the International Conference Commemorating Academician A.M. Obukhov “Turbulence, Atmospheric Dynamics, and Climate,” May 13–16, 2013, Abstracts of Papers (GEOS, Moscow, 2014), pp. 17–18 [in Russian].Google Scholar
  10. 10.
    L. Kh. Ingel’ and M. V. Belyaeva, “Towards the theory of convection in a rotating stratified medium over a thermally inhomogeneous horizontal surface,” Inz.Fiz. Zh. 84 (4), 759–763 (2011).Google Scholar
  11. 11.
    M. V. Kalashnik and O. G. Chkhetiani, “Generation of the mean flow in the fluid layer with a nonuniformly heated wavy boundary,” Fluid Dyn., No. 2, 163–178 (2013).CrossRefGoogle Scholar
  12. 12.
    O. G. Chkhetiani, M. V. Kalashnik, and L. Kh. Ingel’, “Generation of thermal wind over a nonuniformly heated wavy surface,” Izv., Atmos. Ocean. Phys. 49 (2), 121–127 (2013).CrossRefGoogle Scholar
  13. 13.
    B. Ya. Shmerlin, M. V. Kalashnik, and M. B. Shmerlin, “Convective instability of a water-vapor-saturated atmospheric layer. The formation of localized and periodic cloud structures,” J. Exp. Theor. Phys. 115 (6), 1111–1127 (2012).CrossRefGoogle Scholar
  14. 14.
    B. Ya. Shmerlin and M. V. Kalashnik, “Rayleigh convective instability in the presence of phase transitions of water vapor. The formation of large-scale eddies and cloud structures,” Phys.-Usp. 56 (5), 473–485 (2013).CrossRefGoogle Scholar
  15. 15.
    B. Ya. Shmerlin and M. B. Shmerlin, “Convective instability of a cloud medium,” in Proceedings of the International Conference MSS-14: Mode Conversion, Coherent Structures and Turbulence, November 24–27, 2014 (LENAND, Moscow, 2014), pp. 262–267.Google Scholar
  16. 16.
    L. Kh. Ingel, “On some generalization of the Rayleigh problem on a convective instability,” Univers. J. Appl. Math. 2 (1), 24–28 (2014).Google Scholar
  17. 17.
    A. N. Vul’fson and O. O. Borodin, “Boltzmann–Jaynes variational method and the temperature distribution of thermals in the turbulent convective atmospheric surface layer,” Izv., Atmos. Ocean. Phys. 48 (6), 603–609 (2012).CrossRefGoogle Scholar
  18. 18.
    L. Kh. Ingel’ and M. V. Kalashnik, “Nontrivial features in the hydrodynamics of seawater and other stratified solutions,” Phys.-Usp. 55 (4), 356–381 (2012).CrossRefGoogle Scholar
  19. 19.
    M. V. Kalashnik and A. M. Kalashnik, “Analytical model of the intensification of a tropical cyclone,” Izv., Atmos. Ocean. Phys. 47 (6), 766–779 (2011).CrossRefGoogle Scholar
  20. 20.
    M. I. Yaroshevich and L. Kh. Ingel’, “Diurnal variations in the intensity of tropical cyclones,” Izv., Atmos. Ocean. Phys. 49 (4), 375–379 (2013).CrossRefGoogle Scholar
  21. 21.
    L. Kh. Ingel’, “On a positive-feedback mechanism in intense atmospheric vortices,” Izv., Atmos. Ocean. Phys. 50 (1), 61–65 (2014).CrossRefGoogle Scholar
  22. 22.
    K. N. Visheratin and M. V. Kalashnik, “Nonlinear acoustic oscillations in swirling gas flows,” Fluid Dyn. 49 (4), 530–539 (2014).CrossRefGoogle Scholar
  23. 23.
    M. V. Kurgansky, A. V. Chernokulsky, and I. I. Mokhov, “The tornado over Khanty-Mansiysk: An exception or a symptom?,” Russ. Meteorol. Hydrol., 38 (8), 539–546 (2013).CrossRefGoogle Scholar
  24. 24.
    M. V. Kurgansky, “Statistical distribution of atmospheric dust devils,” Icarus 219, 556–560 (2012).CrossRefGoogle Scholar
  25. 25.
    G. V. Levina and M. T. Montgomery, “Helical scenario of tropical cyclone genesis and intensification,” J. Phys.: Conf. Ser. 318, 072012 (2011).Google Scholar
  26. 26.
    M. V. Kurgansky, “On helical vortex motions of moist air,” Izv., Atmos. Ocean. Phys. 49 (5), 479–484 (2013).CrossRefGoogle Scholar
  27. 27.
    M. V. Kurgansky, Coupling between helicity and potential vorticity in a compressible rotating fluid, in Turbulence, Atmospheric Dynamics, and Climate. Proceedings of the International Conference Commemorating Academician A.M. Obukhov (May 13–16, 2013), Ed. by G. S. Golitsyn, I. I. Mokhov, S. N. Kulichkov, M. V. Kurgansky, and O. G. Chkhetiani (GEOS, Moscow, 2014), pp. 119–130.Google Scholar
  28. 28.
    A. O. Levshin and O. G. Chkhetiani, “Decay of helicity in homogeneous turbulence,” JETP Lett. 98 (10), 598–602 (2013).CrossRefGoogle Scholar
  29. 29.
    M. V. Kurgansky, “Simple models of helical baroclinic vortices,” Procedia IUTAM 7, 193–202 (2013).CrossRefGoogle Scholar
  30. 30.
    M. V. Kalashnik, “The effect of cyclone–anticyclone asymmetry at small Rossby numbers,” Izv., Atmos. Ocean. Phys. 47 (4), 439–444 (2011).CrossRefGoogle Scholar
  31. 31.
    M. V. Kalashnik and O. G. Chkhetiani, “The nonlinear decay of vortex flows in a rotating fluid,” Dokl. Earth Sci. 456 (2), 769–774 (2014).CrossRefGoogle Scholar
  32. 32.
    P. N. Svirkunov and M. V. Kalashnik, “Phase patterns of waves from localized sources moving relative to stratified rotating medium (moving hurricane, orographic obstacle),” Dokl. Phys. 57 (12), 474–478 (2012).CrossRefGoogle Scholar
  33. 33.
    P. N. Svirkunov and M. V. Kalashnik, “Phase patterns of dispersive waves from moving localized sources,” Phys.-Usp. 57 (1), 80–91 (2014).CrossRefGoogle Scholar
  34. 34.
    M. V. Kalashnik and P. N. Svirkunov, “On the wave wake behind a moving hurricane,” Izv., Atmos. Ocean. Phys. 50 (3), 278–283 (2014).CrossRefGoogle Scholar
  35. 35.
    M. V. Kalashnik, “Propagation and trapping of the inertia-gravity waves in the shear flows of a rotating fluid,” Vestn. Nizhegorod. Univ. im. N.I. Lobachevskogo, No. 4, 818–819 (2011).Google Scholar
  36. 36.
    M. V. Kalashnik, “Propagation and trapping of inertial gravity waves in shear flows (ray theory),” Izv., Atmos. Ocean. Phys. 49 (2), 217–222 (2013).CrossRefGoogle Scholar
  37. 37.
    M. V. Kalashnik and O. G. Chkhetiani, “Wave generation on an interface by vortex disturbances in a shear flow,” Fluid Dyn. 49 (3), 384–394 (2014).CrossRefGoogle Scholar
  38. 38.
    M. V. Kalashnik, “Generation of internal gravity waves by vortex disturbances in a shear flow,” Izv., Atmos. Ocean. Phys. 50 (6), 638–647 (2014).CrossRefGoogle Scholar
  39. 39.
    S. V. Kostrykin, A. A. Khapaev, and I. G. Yakushkin, “On the decay law of quasi-two-dimensional turbulence,” JETP Lett. 95 (10), 515–520 (2012).CrossRefGoogle Scholar
  40. 40.
    V. P. Goncharov, “Structural elements and collapse regimes in 3D flows on a slope,” J. Exp. Theor. Phys. 113 (4), 714–721 (2011).CrossRefGoogle Scholar
  41. 41.
    V. P. Goncharov and V. I. Pavlov, “Blow-up instability in shallow water flows with horizontally-nonuniform density,” JETP Lett. 96 (7), 427–431 (2012).CrossRefGoogle Scholar
  42. 42.
    V. P. Goncharov and V. I. Pavlov, “Structural elements of collapses in shallow water flows with horizontally nonuniform density,” J. Exp. Theor. Phys. 117 (4), 754–763 (2013).CrossRefGoogle Scholar
  43. 43.
    O. G. Chkhetiani and G. S. Golitsyn, “Detection and propagation of diffusion spots of an admixture and their lifetime,” Dokl. Akad. Nauk 455 (5), 524–528 (2014).Google Scholar
  44. 44.
    G. S. Golitsyn and O. G. Chkhetiani, “Effect of viscosity on admixture horizontal diffusion in the windwave field,” Izv., Atmos. Ocean. Phys. 50 (6), 547–553 (2014).CrossRefGoogle Scholar
  45. 45.
    L. Kh. Ingel’, “Toward a nonlinear theory of katabatic winds,” Fluid Dyn. 46 (4), 505–513 (2011).CrossRefGoogle Scholar
  46. 46.
    L. Kh. Ingel’, “Nonlinear interaction between two components of motion upon precipitation of a heavy particle in a shear flow,” Tech. Phys. 57 (11), 1585–1588 (2012).CrossRefGoogle Scholar
  47. 47.
    L. Kh. Ingel’ and A. A. Makosko, “Toward the theory of atmospheric disturbances caused by gravity field inhomogeneities,” Dokl. Akad. Nauk 455 (5), 580–584 (2014).Google Scholar
  48. 48.
    L. Kh. Ingel’ and A. A. Makosko, “Atmospheric disturbances associated with gravity field inhomogeneities,” in Proceedings of the International Conference MSS-14: Mode Conversion, Coherent Structures and Turbulence (November 24–27, 2014) (LENAND, Moscow, 2014), pp. 239–244 [in Russian].Google Scholar
  49. 49.
    N. P. Shakina, A. R. Ivanova, B. A. Birman, and E. N. Skriptunova, “Blocking: The 2010 summer conditions in the context of current knowledge,” in Analysis of Anomalous Weather Conditions in Russia in the Summer of 2010 (Triada, Moscow, 2011), pp. 6–21.Google Scholar
  50. 50.
    A. R. Ivanova, N. P. Shakina, E. N. Skriptunova, and N. I. Bogaevskaya, “Comparison of dynamical characteristics of the blocking anticyclone in the summer of 2010 with earlier episodes,” in Analysis of Anomalous Weather Conditions in Russia in the Summer of 2010 (Triada, Moscow, 2011), pp. 65–71.Google Scholar
  51. 51.
    I. I. Mokhov, “Specific features of the 2010 summer heat formation in the European territory of Russia in the context of general climate changes and climate anomalies,” Izv., Atmos. Ocean. Phys. 47 (6), 653–660 (2011).CrossRefGoogle Scholar
  52. 52.
    G. V. Gruza and E. Ya. Ran’kova, “Estimation of probable contribution of global warming to the genesis of abnormally hot summers in the European part of Russia,” Izv., Atmos. Ocean. Phys. 47 (6), 661–664 (2011).CrossRefGoogle Scholar
  53. 53.
    P. N. Vargin, A. N. Luk’yanov, and A. V. Gan’shin, “Investigation of dynamic processes in the period of formation and development of the blocking anticyclone over European Russia in summer 2010,” Izv., Atmos. Ocean. Phys. 48 (5), 476–495 (2012).CrossRefGoogle Scholar
  54. 54.
    A. Schneidereit, S. Schubert, P. Vargin, et al., “Largescale flow and the long-lasting blocking high over Russia: Summer 2010,” Mon. Weather Rev. 140, 2967–2981 (2012).CrossRefGoogle Scholar
  55. 55.
    A. R. Lupo, I. I. Mokhov, M. G. Akperov, et al., “A dynamic analysis of the role of the planetaryand synoptic-scale in the summer of 2010 blocking episodes over the European part of Russia,” Adv. Meteorol. 2012, 584257 (2012).CrossRefGoogle Scholar
  56. 56.
    A. R. Lupo, J. A. Hubbart, I. I. Mokhov, et al., “Studying summer season drought in Western Russia,” Adv. Meteorol. 2014, 942027 (2014).Google Scholar
  57. 57.
    A. R. Lupo, S. J. Colucci, Y. Wang, and I. I. Mokhov, “Large-scale dynamics, anomalous flows, and teleconnections,” Adv. Meteorol. 2014, 207413 (2014).Google Scholar
  58. 58.
    I. I. Mokhov, M. G. Akperov, M. A. Prokof’eva, et al., “Blockings in the Northern Hemisphere and EuroAtlantic region: Estimates of changes from reanalysis data and model simulations,” Dokl. Earth Sci. 449 (2), 430–433 (2013).CrossRefGoogle Scholar
  59. 59.
    I. I. Mokhov, A. V. Timazhev, and A. R. Lupo, “Changes in atmospheric blocking characteristics within Euro-Atlantic region and Northern Hemisphere as a whole in the 21st century from model simulations using RCP anthropogenic scenarios,” Global Planet. Change 122, 265–270 (2014).CrossRefGoogle Scholar
  60. 60.
    I. I. Mokhov, S. G. Chefranov, and A. G. Chefranov, “Interaction of global-scale atmospheric vortices: Modeling based on Hamiltonian dynamic system of antipodal point vortices on rotating sphere,” Procedia IUTAM 8, 176–185 (2013).CrossRefGoogle Scholar
  61. 61.
    N. P. Shakina and E. N. Skriptunova, “Diagnosis and forecasting of the probability spectra of precipitation rate ranges,” Russ. Meteorol. Hydrol. 36 (8), 499–510 (2011).CrossRefGoogle Scholar
  62. 62.
    N. P. Shakina, I. A. Khomenko, A. R. Ivanova, and E. N. Skriptunova, “Formation and forecast of freezing precipitation: Literature review and some new results,” Tr. Gidrometeorol. Tsentra Ross., No. 348, 130–161 (2012).Google Scholar
  63. 63.
    N. P. Shakina, A. R. Ivanova, and N. I. Komas’ko, “Present-day concepts of atmospheric frontogenesis. Part 1. Theoretical ideas,” Russ. Meteorol. Hydrol. 39 (10), 639–649 (2014).CrossRefGoogle Scholar
  64. 64.
    N. P. Shakina, A. R. Ivanova, and N. I. Komas’ko, “Present-day concepts of atmospheric frontogenesis. Part 2. Some results of computation from the real data,” Russ. Meteorol. Hydrol. 39 (11), 713–726 (2014).CrossRefGoogle Scholar
  65. 65.
    A. R. Ivanova, “The tropopause slope as a characteristic of its deformation,” Russ. Meteorol. Hydrol. 36 (2), 82–90 (2011).CrossRefGoogle Scholar
  66. 66.
    I. M. Shkolnik and S. V. Efimov, “Cyclonic activity in high latitudes as simulated by a regional atmospheric climate model: Added value and uncertainties,” Environ. Res. Lett. 8, 045007 (2013).CrossRefGoogle Scholar
  67. 67.
    M. G. Akperov and I. I. Mokhov, “Estimates of the sensitivity of cyclonic activity in the troposphere of extratropical latitudes to changes in the temperature regime,” Izv., Atmos. Ocean. Phys. 49 (2), 113–120 (2013).CrossRefGoogle Scholar
  68. 68.
    U. Neu, M. G. Akperov, N. Bellenbaum, et al., “IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms,” Bull. Am. Meteorol. Soc. 94 (4), 529–547 (2013).CrossRefGoogle Scholar
  69. 69.
    E. A. Cherenkova and I. M. Shkol’nik, “Possible location of the polar front over the East European Plain in the middle of the 21st century,” Izv. Ross. Akad. Nauk, Geogr., No. 6, 17–22 (2012).Google Scholar
  70. 70.
    A. V. Baidin and V. P. Meleshko, “Response of the atmosphere at high and middle latitudes to the reduction of sea ice area and the rise of sea surface temperature,” Russ. Meteorol. Hydrol. 39 (6), 361–370 (2014).CrossRefGoogle Scholar
  71. 71.
    H. Kurzke, M. V. Kurgansky, K. Dethloff, et al., “Simulating Southern Hemisphere extra-tropical climate variability with an idealised coupled atmosphere–ocean model,” Geosci. Model Dev. 5, 1161–1175 (2012).CrossRefGoogle Scholar
  72. 72.
    V. E. Gorin and M. D. Tsyrulnikov, “Estimation of multivariate observation-error statistics for AMSU-A data,” Mon. Weather Rev. 139, 3765–3780 (2011).CrossRefGoogle Scholar
  73. 73.
    M. Tsyrulnikov and V. Gorin, “Are atmosphericmodel tendency errors perceivable from routine observations?,” COSMO Newsl., No. 13, 3–18 (2013).Google Scholar
  74. 74.
    M. Masutani, L. Garand, W. Lahoz, et al., Observing System Simulation Experiments: Justifying New Arctic Observation Capabilities (U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Centers for Environmental Prediction, 2013), Office Note 473.Google Scholar
  75. 75.
    E. G. Klimova, “The use of ensemble Kalman filter for the planning of adaptive observations,” Russ. Meteorol. Hydrol. 36 (8), 511–519 (2011).CrossRefGoogle Scholar
  76. 76.
    E. Klimova, “A suboptimal data assimilation algorithm based on the ensemble Kalman filter,” Q. J. R. Meteorol. Soc. 138, 2079–2085 (2012).CrossRefGoogle Scholar
  77. 77.
    E. G. Klimova, G. A. Platov, and N. V. Kilanova, “Development of an environmental data assimilation system based on the ensemble Kalman filter,” Vychisl. Tekhnol. 19 (3), 27–37 (2014).Google Scholar
  78. 78.
    V. M. Mirvis, T. Yu. L’vova, V. P. Meleshko, and V. A. Matyugin, “Experimental calibration of probabilistic forecasts of atmospheric surface temperature obtained from ensemble calculations with the atmospheric model of the Main Hydrophysical Observatory,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 566, 7–25 (2012).Google Scholar
  79. 79.
    Yu. Martynova, R. Zaripov, V. Krupchatnikov, and A. Petrov, “Estimation of the quality of atmospheric dynamics forecasting in the Siberian region using the WRF-ARW mesoscale model,” Russ. Meteorol. Hydrol. 39 (7), 440–447 (2014).CrossRefGoogle Scholar
  80. 80.
    M. Ya. Zdereva, V. M. Tokarev, and M. V. Vinogradova, “Automated forecast of air temperature with learning by the method of group arguments,” Tr. Sib. Nauchno-Issled. Gidrometeorol. Inst., No. 106, 143–151 (2011).Google Scholar
  81. 81.
    D. Yu. Alferov and G. S. Rivin, “Mesoscale weather forecast system COSMO-RU: An ensemble forecast,” Tr. Gidrometeorol. Tsentra Ross., No. 346, 5–16 (2011).Google Scholar
  82. 82.
    R. M. Vil’fand, G. S. Rivin, and I. A. Rozinkina, “Modern operational systems of numerical weather forecast for limited areas,” Tr. Sib. Nauchno-Issled. Gidrometeorol. Inst., No. 106, 5–12 (2011).Google Scholar
  83. 83.
    D. G. Chechin, C. Lüpkes, I. A. Repina, and V. M. Gryanik, “Idealized dry quasi 2-D mesoscale simulations of cold-air outbreaks over the marginal sea ice zone with fine and coarse resolution,” J. Geophys. Res.: Atmos. 118, 1–27 (2013).Google Scholar
  84. 84.
    C. Lüpkes, V. M. Gryanik, J. Hartmann, and E. L. Andreas, “A parametrization, based on sea ice morphology, of the neutral atmospheric drag coefficients for weather prediction and climate models,” J. Geophys. Res.: Atmos. 117, 13112 (2012).CrossRefGoogle Scholar
  85. 85.
    C. Lüpkes, V. M. Gryanik, A. Rosel, et al., “Effect of sea ice morphology during Arctic summer on atmospheric drag coefficients used in climate models,” Geophys. Res. Lett. 40, 446–451 (2013).CrossRefGoogle Scholar
  86. 86.
    B. Ya. Shmerlin and M. B. Shmerlin, “The use of a hydromechanical model for describing the motion of tropical cyclones,” Vestn. Nizhegorod. Univ. im. N.I. Lobachevskogo, No. 4, pp. 564–566 (2013).Google Scholar
  87. 87.
    B. Ya. Shmerlin and M. B. Shmerlin, “A hydromechanical model of tropical cyclone motion,” Sovr. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 9 (2), 243–248 (2012).Google Scholar
  88. 88.
    B. Ya. Shmerlin and M. B. Shmerlin, “Prediction of the motion of tropical cyclones (TCs) using a hydromechanical model (HMM)”, in Proceedings of the International Conference MSS-14: Mode Conversion, Coherent Structures and Turbulence (November 24–27, 2014) (LENAND, Moscow, 2014), pp. 268–273 [in Russian].Google Scholar
  89. 89.
    L. Kh. Ingel’ and L. I. Petrova, “New approaches to forecasting the intensity of tropical cyclones and active effects on them,” Meteospektr, No. 3, 106–113 (2011).Google Scholar
  90. 90.
    L. Kh. Ingel’ and L. I. Petrova, “Tropical cyclones: New ideas,” Priroda (Moscow, Russ. Fed.), No. 5, 27–35 (2012).Google Scholar
  91. 91.
    I. I. Mokhov, E. M. Dobryshman, and M. E. Makarova, “Transformation of tropical cyclones into extratropical: The tendencies of 1970–2012,” Dokl. Earth Sci. 454 (1), 59–63 (2014).CrossRefGoogle Scholar
  92. 92.
    L. Kh. Ingel’, “Toward estimates for the efficiency of active influences to regulate the extreme temperatures of surface air,” Meteospektr, No. 2, 128–131 (2013).Google Scholar
  93. 93.
    L. I. Kizhner, N. K. Barashkova, A. S. Akhmetshina, et al., “Forecast of precipitation in the area of Bogashevo airport using the WRF model,” Atmos. Oceanic Opt. 27 (2), 187–194 (2014).CrossRefGoogle Scholar
  94. 94.
    A. V. Starchenko, E. A. Danilkin, R. B. Nuterman, and M. V. Terent’eva, “The use of a microscale meteorological model for studying the flow structure over the airport runway,” Vestn. Tomsk. Gos. Univ., Ser. Mat. Mekh., No. 5, 91–101 (2013).Google Scholar
  95. 95.
    D. V. Blinov, V. L. Perov, B. E. Peskov, and G. S. Rivin, “The extreme bora of February 7–8, 2012, near Novorossiisk and its prediction by the COSMO-Ru model,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 4, 36–43 (2013).Google Scholar
  96. 96.
    D. B. Kiktev, E. D. Astakhova, D. V. Blinov, et al., “Development of forecasting technologies for meteorological support of the Sochi-2014 Winter Olympic Games,” Russ. Meteorol. Hydrol. 38 (10), 653–660 (2013).CrossRefGoogle Scholar
  97. 97.
    S. S. Zilitinkevich, T. Elperin, N. Kleorin, et al., “A hierarchy of energyand flux-budget (EFB) turbulence closure models for stably stratified geophysical flows,” Boundary-Layer Meteorol. 146, 341–373 (2013).CrossRefGoogle Scholar
  98. 98.
    S. S. Zilitinkevich, Atmospheric Turbulence and Planetary Boundary Layers (Fizmatlit, Moscow, 2013) [in Russian].Google Scholar
  99. 99.
    I. N. Esau, S. S. Zilitinkevich, G. Djolov, and C. J. de W. Rautenbach, “A micro-meteorological experiment in the atmospheric boundary layer in Highveld Region,” IOP Conf. Series: Earth and Environmental Science 13 (8), 012011 (2011).Google Scholar
  100. 100.
    A. A. Baklanov, B. Grisogono, R. Bornstein, et al., “The nature, theory, and modeling of atmospheric planetary boundary layers,” Bull. Am. Meteorol. Soc. 92, 123–128 (2011).CrossRefGoogle Scholar
  101. 101.
    S. S. Zilitinkevich, S. A. Tyuryakov, Yu. I. Troitskaya, and E. A. Mareev, “Theoretical models of the height of the atmospheric boundary layer and turbulent entrainment at its upper boundary,” Izv., Atmos. Ocean. Phys. 48 (1), 133–142 (2012).CrossRefGoogle Scholar
  102. 102.
    S. S. Zilitinkevich, “The height of the atmospheric planetary boundary layer: State of the art and new development,” in National Security and Human Health Implications of Climate Change, Ed. by H. J. S. Fernando, Z. Klaic, and J. L. McKulley (Springer, Dordrecht, 2012), Chap. 13, pp. 147–161.CrossRefGoogle Scholar
  103. 103.
    Y. I. Troitskaya, O. Druzhinin, and S. Zilitinkevich, “Direct numerical simulation of a turbulent wind over a wavy water surface,” J. Geophys. Res., C: Oceans Atmos. 117, 00J05 (2012).CrossRefGoogle Scholar
  104. 104.
    A. A. Baklanov, V. G. Bondur, Z. B. Klaic, and S. S. Zilitinkevich, “Integration of geospheres in earth systems: Modern queries in environmental physics,” Geofizika 29 (1), 1–4 (2012).Google Scholar
  105. 105.
    I. Esau, P. Luhunga, G. Djolov, et al., “Links between observed micro-meteorological variability and land use patterns in highveld priority area of South Africa,” Meteorol. Atmos. Phys. 118 (3), 129–142 (2012).CrossRefGoogle Scholar
  106. 106.
    I. Esau, R. Davy, S. Outten, et al., “Structuring of turbulence and its impact on basic features of Ekman boundary layers,” Nonlinear Processes Geophys. 20, 589–604 (2013).CrossRefGoogle Scholar
  107. 107.
    A. Hellsten and S. Zilitinkevich, “Role of convective structures and background turbulence in the dry convective boundary layer,” Boundary-Layer Meteorol. 149, 323–353 (2013).CrossRefGoogle Scholar
  108. 108.
    I. N. Ezau, T. Wolf, E. A. Miller, et al., “The analysis of results of remote sensing monitoring of the temperature profile in lower atmosphere in Bergen (Norway),” Russ. Meteorol. Hydrol. 38 (10), 715–722 (2013).CrossRefGoogle Scholar
  109. 109.
    Yu. I. Troitskaya, E. V. Ezhova, and S. S. Zilitinkevich, “Momentum and buoyancy exchange in a turbulent air boundary layer over a wavy water surface. Part 1. A harmonic wave,” Nonlinear Process. Geophys. 20, 825–839 (2013).CrossRefGoogle Scholar
  110. 110.
    Yu. I. Troitskaya, E. V. Ezhova, D. A. Sergeev, et al., “Momentum and buoyancy exchange in a turbulent air boundary layer over a wavy water surface. Part 2. Wind wave spectra,” Nonlinear Process. Geophys. 20, 841–856 (2013).CrossRefGoogle Scholar
  111. 111.
    S. V. Anisimov, E. A. Mareev, N. M. Shikhova, et al., “Aeroelectric structures and turbulence in atmospheric boundary layer,” Nonlinear Process. Geophys. 20, 819–824 (2013).CrossRefGoogle Scholar
  112. 112.
    O. A. Druzhinin, L. A. Ostrovsky, and S. S. Zilitinkevich, “The study of the effect of small-scale turbulence on internal gravity waves propagation in a pycnocline,” Nonlinear Process. Geophys. 20, 1–11 (2013).CrossRefGoogle Scholar
  113. 113.
    H. K. Lappalainen, T. Petäjä, J. Kujansuu, et al., “Pan-Eurasian Experiment (PEEX)—A research initiative meeting the grand challenges of the changing environment of the northern Pan-Eurasian Arcticboreal areas,” Geogr. Environ. Sustainability 7 (2), 13–48 (2014).CrossRefGoogle Scholar
  114. 114.
    Yu. I. Troitskaya, D. A. Sergeev, O. Druzhinin, et al., “Atmospheric boundary layer over steep surface waves,” Ocean Dyn. 64, 1153–1161 (2014).CrossRefGoogle Scholar
  115. 115.
    A. F. Kurbatskii and L. I. Kurbatskaya, “On the eddy mixing and energetics of turbulence in a stable atmospheric boundary layer,” Izv., Atmos. Ocean. Phys. 48 (6), 666–673 (2012).CrossRefGoogle Scholar
  116. 116.
    A. F. Kurbatskii and L. I. Kurbatskaya, “RANS-modeling of intermittent turbulence in a thermally stable stratified boundary layer,” Prikl. Mekh. Tekh. Fiz. 54 (4), 55 (2013).Google Scholar
  117. 117.
    A. F. Kurbatskii and L. I. Kurbatskaya, “Modeling the eddy transport of momentum and heat: Comparison with direct measurements in free atmosphere,” Izv., Atmos. Ocean. Phys. 50 (4), 369–376 (2014).CrossRefGoogle Scholar
  118. 118.
    O. F. Vasil’ev, O. F. Voropaeva, and A. F. Kurbatskii, “Turbulent mixing in stably stratified flows of the environment: The current state of the problem (review),” Izv., Atmos. Ocean. Phys. 47 (3), 265–280 (2011).CrossRefGoogle Scholar
  119. 119.
    L. Kh. Ingel’, “On the effect of spray on the dynamics of the marine atmospheric surface layer in strong winds,” Izv., Atmos. Ocean. Phys. 47 (1), 119–127 (2011).CrossRefGoogle Scholar
  120. 120.
    A. V. Glazunov, “Numerical modeling of turbulent flows over an urban-type surface: Computations for neutral stratification,” Izv., Atmos. Ocean. Phys. 50 (2), 134–142 (2014).CrossRefGoogle Scholar
  121. 121.
    A. V. Glazunov, “Numerical simulation of stably stratified turbulent flows over flat and urban surfaces,” Izv., Atmos. Ocean. Phys. 50 (3), 236–245 (2014).CrossRefGoogle Scholar
  122. 122.
    A. V. Glazunov and V. P. Dymnikov, “Spatial spectra and characteristic horizontal scales of temperature and velocity fluctuations in the convective boundary layer of the atmosphere,” Izv., Atmos. Ocean. Phys. 49 (1), 33–54 (2013).CrossRefGoogle Scholar
  123. 123.
    M. V. Kurgansky, A. Montecinos, V. Villagran, and S. M. Metzger, “Micrometeorological conditions for dust-devil occurrence in the Atacama Desert,” Boundary-Layer Meteorol. 138, 285–298 (2011).CrossRefGoogle Scholar
  124. 124.
    M. V. Kurgansky, “On the vertical lifting of dust in a convective unstable atmospheric boundary layer,” Izv., Atmos. Ocean. Phys. 50 (4), 337–342 (2014).CrossRefGoogle Scholar
  125. 125.
    O. G. Chkhetiani, E. B. Gledzer, M. S. Artamonova, and M. A. Iordanskii, “Dust resuspension under weak wind conditions: Direct observations and model,” Atmos. Chem. Phys. 12, 5147–5162 (2012).CrossRefGoogle Scholar
  126. 126.
    V. M. Stepanenko, E. E. Machul’skaya, M. V. Glagolev, and V. N. Lykosov, “Numerical modeling of methane emissions from lakes in the permafrost zone,” Izv., Atmos. Ocean. Phys. 47 (2), 252–264 (2011).CrossRefGoogle Scholar
  127. 127.
    N. M. Gavrilov and S. P. Kshevetskii, “Numerical modeling of propagation of breaking nonlinear acoustic–gravity waves from the lower to the upper atmosphere,” Adv. Space Res. 51 (7), 1168–1174 (2013).CrossRefGoogle Scholar
  128. 128.
    N. M. Gavrilov and S. P. Kshevetskii, “A study of propagation of nonlinear acoustic–gravity waves in the middle and upper atmosphere by means of numerical modeling,” Russ. J. Phys. Chem. B 7 (6), 788–794 (2013).CrossRefGoogle Scholar
  129. 129.
    N. M. Gavrilov and S. P. Kshevetskii, “Numerical modeling of the propagation of nonlinear acoustic–gravity waves in the middle and upper atmosphere,” Izv., Atmos. Ocean. Phys. 50 (1), 66–72 (2014).CrossRefGoogle Scholar
  130. 130.
    N. M. Gavrilov and S. P. Kshevetskii, “Three-dimensional numerical simulation of nonlinear acoustic–gravity wave propagation from the troposphere to the thermosphere,” Earth, Planets Space 66 (1), 88 (2014).CrossRefGoogle Scholar
  131. 131.
    N. M. Gavrilov and S. P. Kshevetskii, “Verifications of the nonlinear numerical model and polarization relations of atmospheric acoustic–gravity waves,” Geosci. Model Dev. Discus. 7, 7805–7822 (2014).CrossRefGoogle Scholar
  132. 132.
    N. M. Gavrilov and A. V. Koval’, “Parameterization of mesoscale stationary orographic wave forcing for use in numerical models of atmospheric dynamics,” Izv., Atmos. Ocean. Phys. 49 (3), 244–251 (2013).CrossRefGoogle Scholar
  133. 133.
    N. M. Gavrilov, A. V. Koval’, A. I. Pogorel’tsev, and E. N. Savenkova, “Numerical simulation of the response of general circulation of the middle atmosphere to spatial inhomogeneities of orographic waves,” Izv., Atmos. Ocean. Phys. 49 (4), 367–374 (2013).CrossRefGoogle Scholar
  134. 134.
    N. M. Gavrilov, A. V. Koval’, A. I. Pogoreltsev, and E. N. Savenkova, “Numerical modeling influence of inhomogeneous orographic waves on planetary waves in the middle atmosphere,” Adv. Space Res. 51 (11), 2145–2154 (2013).CrossRefGoogle Scholar
  135. 135.
    N. M. Gavrilov, A. V. Koval’, A. I. Pogorel’tsev, and E. N. Savenkova, “Numerical simulation of the influence of stationary mesoscale orographic waves on the meridional circulation and ozone fluxes in the middle atmosphere,” Geomagn. Aeron. (Engl. Transl.) 54 (3), 381–387 (2014).CrossRefGoogle Scholar
  136. 136.
    Yu. I. Portnyagin, E. G. Merzlyakov, T. V. Solov’eva, et al., “Height–latitude structure of the vertical component of the migrating semidiurnal tide in the upper mesosphere and lower thermosphere region (80–100 km),” Izv., Atmos. Ocean. Phys. 47 (1), 108–118 (2011).CrossRefGoogle Scholar
  137. 137.
    E. G. Merzlyakov, Yu. I. Portnyagin, T. V. Solov’eva, et al., “Altitude–latitude structure of the vertical wind component of the migrating diurnal tide in the range of heights from 80 to 100 km,” Izv., Atmos. Ocean. Phys. 48 (2), 174–184 (2012).CrossRefGoogle Scholar
  138. 138.
    E. V. Suvorova and A. I. Pogorel’tsev, “Modeling of nonmigrating tides in the middle atmosphere,” Geomagn. Aeron. (Engl. Transl.) 51 (1), 105–115 (2011).CrossRefGoogle Scholar
  139. 139.
    P. N. Vargin and I. V. Medvedeva, “Temperature and dynamical regimes of the northern hemisphere extratropical atmosphere during sudden stratospheric warming in winter 2012–2013,” Izv., Atmos. Ocean. Phys. 51 (1), 12–29 (2014).CrossRefGoogle Scholar
  140. 140.
    E. N. Savenkova, A. Yu. Kanukhina, A. I. Pogoreltsev, and E. G. Merzlyakov, “Variability of the springtime transition date and planetary waves in the stratosphere,” J. Atmos. Sol.–Terr. Phys. 90–91, 1–8 (2012).CrossRefGoogle Scholar
  141. 141.
    A. I. Pogorel’tsev, E. N. Savenkova, and N. N. Pertsev, “Sudden stratospheric warmings: The role of normal atmospheric modes,” Geomagn. Aeron. (Engl. Transl.) 54 (3), 357–372 (2014).CrossRefGoogle Scholar
  142. 142.
    D. V. Kulyamin and V. P. Dymnikov, “A three-dimensional model of atmospheric dynamics,” Geliogeofiz. Issled., No. 7, 15–42 (2014).Google Scholar
  143. 143.
    D. V. Kulyamin and V. P. Dymnikov, “Modeling of the general circulation of troposphere–stratosphere–mesosphere with the ionospheric D-layer,” Geliogeofiz. Issled., No. 10, 5–44 (2014).Google Scholar
  144. 144.
    V. P. Dymnikov, V. N. Lykosov, and E. M. Volodin, “Modeling climate and its changes: Current problems,” Herald Russ. Acad. Sci. 82 (2), 111–119 (2012).CrossRefGoogle Scholar
  145. 145.
    V. N. Lykosov, A. V. Glazunov, D. V. Kulyamin, et al., Supercomputer Simulation of Physics of the Climate System (Moscow State University, Moscow, 2012) [in Russian].Google Scholar
  146. 146.
    E. P. Gordov, V. N. Lykosov, V. N. Krupchatnikov, et al., Computational–informational Technologies of the Monitoring and Simulation of Climate Changes and Their Consequences (Nauka, Novosibirsk, 2013) [in Russian].Google Scholar
  147. 147.
    Models and Methods in the Problem of Atmosphere–Hydrosphere Interaction, Ed. by V. P. Dymnikov, V. N. Lykosov, and E. P. Gordov (TGU, Tomsk, 2014) [in Russian].Google Scholar
  148. 148.
    A. A. Bart, D. A. Belikov, and A. V. Starchenko, “Mathematical model for the air quality prediction in a town using supercomputers,” Vestn. Tomsk. Gos. Univ., Ser. Mat. Mekh., No. 3, 15–24 (2011).Google Scholar
  149. 149.
    M. Ya. Zdereva and V. M. Tokarev, “Analysis and forecast of weather conditions affecting the concentration of atmospheric pollutantsin a megapolis,” Tr. SibNIGMI, No. 106, 152–158 (2011).Google Scholar
  150. 150.
    G. V. Surkova, D. V. Blinov, A. A. Kirsanov, et al., “Simulation of the transport of air pollutant plumes from forest fire sources using the COSMO-Ru7-ART chemical transport model,” Opt. Atmos. Okeana 27 (1), 75–81 (2014).CrossRefGoogle Scholar
  151. 151.
    V. Penenko, A. Baklanov, E. Tsvetova, and A. Mahura, “Direct and inverse problems in a variational concept of environmental modeling,” Pure Appl. Geophys. 169, 447–465 (2012).CrossRefGoogle Scholar
  152. 152.
    A. V. Penenko and V. V. Penenko, “Direct data assimilation method for convection-diffusion models based on splitting scheme,” Vych. Tekhnol. 19 (4), 69–83 (2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Obukhov Institute of Atmospheric SciencesRussian Academy of SciencesMoscowRussia
  2. 2.Siberian Regional Hydrometeorological Research InstituteNovosibirskRussia
  3. 3.Institute of Computational Mathematics and Mathematical Geophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  4. 4.Institute of Monitoring of Climate and Ecology Systems, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations