Izvestiya, Atmospheric and Oceanic Physics

, Volume 51, Issue 9, pp 1021–1033 | Cite as

New areas of polar lows over the Arctic as a result of the decrease in sea ice extent

  • E. V. Zabolotskikh
  • I. A. Gurvich
  • B. Chapron
Remote Study of Arctic Atmospheric Processes


Three mesocyclones (MCs) over the Russian (Eastern) Arctic are investigated using multispectral satellite remote sensing data, surface analysis maps, and reanalysis data. Advanced retrieval algorithms are used for estimating the geophysical parameter from satellite passive microwave measurements. These methods allow reconstructing in full the geophysical parameter fields characterizing polar lows. Synoptic analysis along with cloud image, atmospheric water vapor content, cloud liquid water content, and sea surface wind speed field analysis show that, while the Arctic sea ice retreats, new areas of open water appear where MCs can arise. A detailed study of several polar low cases reveals the typical conditions of their formation and development. Further studies are in demand due to the danger of MC extreme events for navigation, transport, and fishery operations in these unexplored regions.


mesoscale cyclones Russian Arctic seas synergetic analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blechschmidt, A.M., A 2-year climatology of polar low events over the Nordic seas from satellite remote sensing, Geophys. Res. Lett., 2008, vol. 35, no. 9.Google Scholar
  2. Bobylev, L.P., Zabolotskikh, E.V., Mitnik, L.M., and Mitnik, M.L., Arctic polar low detection and monitoring using atmospheric water vapor retrievals from satellite passive microwave data, IEEE Trans. Geosci. Remote Sens., 2011, vol. 49, no. 9, pp. 3302–3310.CrossRefGoogle Scholar
  3. Bracegirdle, T.J. and Gray, S.L., An objective climatology of the dynamical forcing of polar lows in the Nordic seas, Int. J. Climatol., 2008, vol. 28, no. 14, pp. 1903–1919.CrossRefGoogle Scholar
  4. Chechin, D.G., Lupkes, C., Repina, I.A., and Gryanik, V.M., Idealized dry quasi 2-D mesoscale simulations of cold-air outbreaks over the marginal sea ice zone with fine and coarse resolution, J. Geophys. Res.: Atmos., 2013, vol. 118, no. 16, pp. 8787–8813.Google Scholar
  5. Chunchusov, I., Vachon, P.W., and Ramsay, B., Detection and characterization of mesoscale cyclones in RADARSAT synthetic aperture radar images of the Labrador Sea, Can. J. Remote Sens, 2000, vol. 26, no. 3, pp. 213–230.CrossRefGoogle Scholar
  6. Claud, C., Heinemann, G., Raustein, E., et al., Polar low le Cygne: Satellite observations and numerical simulations, Q. J. R. Meteorol. Soc., 2004, vol. 130, no. 598, pp. 1075–1102.CrossRefGoogle Scholar
  7. Comiso, J.C., Parkinson, C.L., Gersten, R., and Stock, L., Accelerated decline in the Arctic sea ice cover, Geophys. Res. Lett., 2008, vol. 35, L01703. doi 10.1029/2007GL031972CrossRefGoogle Scholar
  8. Condron, A., Bigg, G.R., and Renfrew, I.A., Modeling the impact of polar mesocyclones on ocean circulation, J. Geophys. Res.: Oceans, 2008, vol. 113, C10005. doi 10.1029/2007JC004599CrossRefGoogle Scholar
  9. Condron, A. and Renfrew, I.A., The impact of polar mesoscale storms on northeast Atlantic Ocean circulation, Nat. Geosci., 2012, vol. 6, no. 1, pp. 34–37.Google Scholar
  10. Esau, I., Indirect air–sea interactions simulated with a coupled turbulence-resolving model, Ocean Dyn., 2014, vol. 64, no. 5, pp. 689–705.CrossRefGoogle Scholar
  11. Gang, F., Polar Lows: Intense Cyclones in Winter, Qindao, China, 2000.Google Scholar
  12. Gurvich, I.A., Mitnik, L.M., and Mitnik, M.L., Mesoscale cyclogenesis over Far Eastern seas: A study on the basis of satellite microwave radiometric and radar measurements, Issled. Zemli Kosmosa, 2008, no. 5, pp. 58–73.Google Scholar
  13. Gurvich, I.A., Mitnik, L.M., and Mitnik, M.L., Mesoscale cyclogenesis over the Sea of Japan on January 7–13, 2009 according to satellite multisensory data, Issled. Zemli Kosmosa, 2010, vol. 4, pp. 11–22.Google Scholar
  14. Gurvich, I.A. and Pichugin, M.K., Study of the comparative characteristics of typical mesoscale cyclones over Far Eastern seas on the basis of satellite multisensory sounding, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2013, vol. 10, no. 1, pp. 51–59.Google Scholar
  15. Ivanov, V.V., Alekseev, V.A., Alekseeva, T.A., Koldunov, N.V., Repina, I.A., and Smirnov, A.V., Is the Arctic ice cover seasonal?, Issled. Zemli Kosmosa, 2013, no. 4, pp. 50–65.Google Scholar
  16. Kolstad, E.W., Bracegirdle, T.J., and Seierstad, I.A., Marine cold-air outbreaks in the North Atlantic: Temporal distribution and associations with large-scale atmospheric circulation, Clim. Dyn, 2009, vol. 33, nos. 2-3, pp. 187–197.CrossRefGoogle Scholar
  17. Mitnik, L.M., Gurvich, I.A., and Pichugin, M.K., Satellite sensing of intense winter mesocyclones over the Japan Sea, in Proc. IEEE International Geosciences and Remote Sensing Symposium (IGARSS-2011), July 24–29, 2011, Vancouver, Canada, 2011, pp. 2345–2348.Google Scholar
  18. Mitnik, L.M., Mitnik, M.L., and Gurvich, I.A., Passive and active microwave sensing of winter mesoscale cyclones over the ocean, in Proc. IEEE International Geosciences and Remote Sensing Symposium (IGARSS-06), Denver, Colorado, July 31–August 4, 2006.Google Scholar
  19. Mokhov, I.I., Akperov, M.G., Lagun, V.E., and Lutsenko, E.I., Intense Arctic mesocyclones, Izv., Atmos. Ocean. Phys., 2007, vol. 43, no. 3, pp. 259–265.CrossRefGoogle Scholar
  20. Ninomiya, K., Wakahara, K., and Ohkubo, H., Meso-ascale low development over the northeastern Japan Sea under the influence of a parent large-scale low and a cold vortex aloft, J. Meteorol. Soc. Jpn., 1993, vol. 71, pp. 73–91.Google Scholar
  21. Ninomiya, K., Nishimura, T., Suzuki, T., Matsumura, S., and Ohfuchi, W., Polar low genesis over the east coast of the Asian continent simulated in an AGCM, J. Meteorol. Soc. Jpn., Ser II, 2003, vol. 81, no. 4, pp. 697–712.CrossRefGoogle Scholar
  22. Overland, J.E. and Wang, M., Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice, Tellus A, 2010, vol. 62, no. 1, pp. 1–9.CrossRefGoogle Scholar
  23. Quilfen, Y., Prigent, C., Chapron, B., Mouche, A.A., and Houti, N., The potential of QuikSCAT and WindSat observations for the estimation of sea surface wind vector under severe weather conditions, J. Geophys. Res., 2007, vol. 112, C09023. doi 10.1029/2007JC004163Google Scholar
  24. Rasmussen, E.A., A case study of a polar low development over the Barents Sea, Tellus A, 1985, vol. 37, no. 5, pp. 407–418.CrossRefGoogle Scholar
  25. Rasmussen, E.A. and Turner, J., Polar Lows: Mesoscale Weather Systems in the Polar Regions, Cambridge: Cambridge Univ. Press, 2003.CrossRefGoogle Scholar
  26. Friedman, K.S., Pichel, W.G., and ClementeColón, P., Synthetic aperture radar as a tool for investigating polar mesoscale cyclones Weather Forecasting, 2000, vol. 15, no. 12, pp. 745–758.Google Scholar
  27. Sukhovei, V.F., Morya Mirovogo okeana (The Seas of the World Ocean), Leningrad: Gidrometeoizdat, 1986.Google Scholar
  28. Tsuboki, K. and Asai, T., The multi-scale structure and development mechanism of mesoscale cyclones over the Sea of Japan in winter, J. Meteorol. Soc. Jpn., 2004, vol. 82, pp. 597–621.CrossRefGoogle Scholar
  29. Zabolotskikh, E.V., Mitnik, L.M., and Chapron, B., New approach for severe marine weather study using satellite passive microwave sensing, Geophys. Res. Lett., 2013, vol. 40, no. 13, pp. 3347–3350.CrossRefGoogle Scholar
  30. Zabolotskikh, E., Mitnik, L., and Chapron, B., An updated geophysical model for AMSR-E and SSMIS brightness temperature simulations over oceans, Remote Sens., 2014a, vol. 6, no. 3, pp. 2317–2342.CrossRefGoogle Scholar
  31. Zabolotskikh, E., Mitnik, L., and Chapron, B., GCOMW1 AMSR2 and MetOp-A ASCAT wind speeds for the extratropical cyclones over the North Atlantic, Remote Sens. Environ., 2014b, vol. 147, pp. 89–98.CrossRefGoogle Scholar
  32. Zahn, M. and von Storch, H., Investigation of past and future polar low frequency in the North Atlantic, in Extreme Events and Natural Hazards: The Complexity Perspective, Sharma, A.S., et sl., Eds., Am. Geophys. Union, 2013, pp. 99–110.Google Scholar
  33. Zahn, M. and von Storch, H., A long-term climatology of North Atlantic polar lows, Geophys. Res. Lett., 2008, vol. 35, no. L22702. doi 10.1029/2008GL035769Google Scholar
  34. Zimich, P.I., Atmosfernye protsessy i pogoda Vostochnoi Arktiki (Atmospheric Processes and Weather in East Arctic), Vladivostok: Dal’nauka, 1998.Google Scholar
  35. Zimich, P.I., Uragany poberezh’ya Chukotki i ikh prognozirovanie (Chukotka Coastal Hurricanes and Their Prediction), Magadan: Dal’nauka, 2002.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • E. V. Zabolotskikh
    • 1
  • I. A. Gurvich
    • 2
  • B. Chapron
    • 3
  1. 1.Russian State Hydrometeorological UniversitySt. PetersburgRussia
  2. 2.Il’ichev Pacific Oceanological Institute, Far East BranchRussian Academy of SciencesVladivostokRussia
  3. 3.IfremerBrestFrance

Personalised recommendations