Izvestiya, Atmospheric and Oceanic Physics

, Volume 51, Issue 4, pp 351–361 | Cite as

Large-eddy simulation of stratified turbulent flows over heterogeneous landscapes

Article
  • 64 Downloads

Abstract

Large-eddy simulation (LES) runs are performed to calculate flows over heterogeneous surfaces imitating small forest lakes. Regularities in the turbulent exchange of heat and momentum over such objects are examined. A weak sensitivity of turbulence characteristics over a “lake” to thermal stratification is noted. Problems of the representativeness of field eddy covariance measurements of turbulent fluxes over such objects are discussed.

Keywords

atmospheric boundary layer lake turbulence large-eddy simulation LES 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Mironov, E. Heise, E. Kourzeneva, et al., “Implementation of the lake parameterisation scheme flake into the numerical weather prediction model COSMO,” Boreal Environ. Res. 15 (2), 218–230 (2010).Google Scholar
  2. 2.
    E. Dutra, V. M. Stepanenko, G. Balsamo, et al., “An offline study of the impact of lakes on the performance of the ECMWF surface scheme,” Boreal Environ. Res. 15 (2), 100–112 (2010).Google Scholar
  3. 3.
    G. Balsamo, R. Salgado, E. Dutra, et al., “On the contribution of lakes in predicting near-surface temperature in a global weather forecasting model,” Tellus A 64, 15829 (2012).CrossRefGoogle Scholar
  4. 4.
    W. R. Rouse, C. J. Oswald, J. Binyamin, et al., “The role of northern lakes in a regional energy balance,” J. Hydrometeorol. 6 (3), 291–305 (2005).CrossRefGoogle Scholar
  5. 5.
    T. R. Oke, Boundary Layer Climates (Routledge Taylor and Francis, New York, 1987).Google Scholar
  6. 6.
    R. B. Stull, An Introduction to Boundary Layer Meteorology (Kluwer, Norwell, MA, 1988).CrossRefGoogle Scholar
  7. 7.
    J. R. Garratt, The Atmospheric Boundary Layer (Cambridge Univ. Press, New York, 1994).Google Scholar
  8. 8.
    L. Mahrt, “Surface heterogeneity and vertical structure of the boundary layer,” Boundary-Layer Meteorol. 96 (1–2), 33–62 (2000).CrossRefGoogle Scholar
  9. 9.
    J. W. Glendening and C.-L. Lin, “Large eddy simulation of internal boundary layers created by a change in surface roughness,” J. Atmos. Sci. 59 (10), 1697–1711 (2002).CrossRefGoogle Scholar
  10. 10.
    E. Bou-Zeid, C. Meneveau, and M. B. Parlange, “Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: Blending height and effective surface roughness,” Water Resour. Res. 40 (2), W02505 (2004).Google Scholar
  11. 11.
    E. Bou-Zeid, M. Parlange, and C. Meneveau, “On the parameterization of surface roughness at regional scales,” J. Atmos. Sci. 64 (1), 216–227 (2007).CrossRefGoogle Scholar
  12. 12.
    R. Stoll and F. Porte-Agel, “Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain,” Water Resour. Res. 42 (1), W01409 (2006).Google Scholar
  13. 13.
    R. Stoll and F. Porte-Agel, “Surface heterogeneity effects on regional-scale fluxes in stable boundary layers: surface temperature transitions,” J. Atmos. Sci. 66 (2), 412–431 (2009).CrossRefGoogle Scholar
  14. 14.
    J. A. Downing, Y. T. Praire, J. J. Cole, et al., “The global abundance and size distribution of lakes, ponds, and impoundments,” Limnol. Oceanogr. 51 (5), 2388–2397 (2006).CrossRefGoogle Scholar
  15. 15.
    S. A. Condie and I. T. Webster, “Estimating stratification in shallow water bodies from mean meteorological conditions,” J. Hydraul. Eng 127 (4), 286–292 (2001).CrossRefGoogle Scholar
  16. 16.
    B. Boehrer and M. Schultze, “Stratification of lakes,” Rev. Geophys. 46 (2), RG2005 (2008).CrossRefGoogle Scholar
  17. 17.
    J. M. Chen, T. A. Clack, M. D. Novak, and R. S. Adams, “A wind tunnel study of turbulent airflow in forest clear cuts,” in Wind and Trees, Ed. by M. P. Coutts and J. Grace (Cambridge Univ. Press, New York, 1995), pp. 71–87.CrossRefGoogle Scholar
  18. 18.
    C. D. Markfort, A. L. S. Perez, J. W. Thill, et al., “Wind sheltering of a lake by a tree canopy or bluff topography,” Water Resour. Res. 46 (3), W03530 (2010).Google Scholar
  19. 19.
    M. Detto, G. G. Katul, M. Siqueira, et al., “The structure of turbulence near a tall forest edge: The backwardfacing step flow analogy revisited,” Ecol. Appl. 18 (6), 1420–1435 (2008).CrossRefGoogle Scholar
  20. 20.
    J. Liu, J. M. Chen, T. A. Black, and M. D. Novak, “E–e modelling of turbulent air flow downwind of a model forest edge,” Boundary-Layer Meteorol. 77 (1), 21–44 (1996).CrossRefGoogle Scholar
  21. 21.
    E. G. Patton, R. H. Shaw, M. J. Judd, and M. R. Raupach, “Large-eddy simulation of windbreak flow,” Boundary-Layer Meteorol. 87 (2), 275–306 (1998).CrossRefGoogle Scholar
  22. 22.
    J. D. Wilson and T. K. Flesch, “Wind and remnant tree sway in forest cutblocks. III. A windflow model to diagnose spatial variation,” Agric. For. Meteorol. 93 (4), 259–282 (1999).CrossRefGoogle Scholar
  23. 23.
    B. Yang, M. R. Raupach, R. H. Shaw, et al., “Largeeddy simulation of turbulent flow across a forest edge. Part I: Flow statistics,” Boundary-Layer Meteorol. 120 (3), 377–412 (2006).CrossRefGoogle Scholar
  24. 24.
    B. Yang, A. Morse, R. H. Shaw, and K. T. Paw, “Largeeddy simulation of turbulent flow across a forest edge. Part II: Momentum and turbulent kinetic energy budget,” Boundary-Layer Meteorol. 121 (3), 433–457 (2006).CrossRefGoogle Scholar
  25. 25.
    M. Cassiani, G. G. Katul, and J. D. Albertson, “The effects of canopy leaf area index on airflow across forest edges: Large-eddy simulation and analytical results,” Boundary-Layer Meteorol. 126 (3), 433–460 (2008).CrossRefGoogle Scholar
  26. 26.
    T. Foken, “The energy balance closure problem: An overview,” Ecol. Appl. 18 (6), 1351–1367 (2008).CrossRefGoogle Scholar
  27. 27.
    A. Nordbo, S. Launiainen, I. Mammarella, et al., “Long-term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique,” J. Geophys. Res. 116 (D2), 1–17 (2011).Google Scholar
  28. 28.
    V. M. Stepanenko, A. Martynov, K. D. Jöhnk, et al., “A one-dimensional model intercomparison study of thermal regime of a shallow, turbid midlatitude lake,” Geosci. Model Dev. 6 (4), 1337–1352 (2013).CrossRefGoogle Scholar
  29. 29.
    V. Stepanenko, K. D. Jöhnk, E. Machulskaya, et al., “Simulation of surface energy fluxes and stratification of a small boreal lake by a set of one-dimensional models,” Tellus A 66, 21389 (2014).CrossRefGoogle Scholar
  30. 30.
    J. DeCosmo, K. B. Katsaros, S. D. Smith, et al., “Airsea exchange of water vapor and sensible heat: The Humidity Exchange Over the Sea (HEXOS),” J. Geophys. Res. 101 (C5), 12001–12016 (1996).CrossRefGoogle Scholar
  31. 31.
    A. V. Glazunov, “Numerical modeling of turbulent flows over an urban-type surface: Computations for neutral stratification,” Izv., Atmos. Ocean. Phys. 50 (2), 134–142 (2014).CrossRefGoogle Scholar
  32. 32.
    A. V. Glazunov, “Numerical simulation of stably stratified turbulent flows over flat and urban surfaces,” Izv., Atmos. Ocean. Phys. 50 (3), 236–245 (2014).CrossRefGoogle Scholar
  33. 33.
    A. V. Glazunov, “Numerical simulation of stably stratified turbulent flows over an urban surface: Spectra and scales and parameterization of temperature and windvelocity profiles,” Izv., Atmos. Ocean. Phys. 50 (4), 356–368 (2014).CrossRefGoogle Scholar
  34. 34.
    A. V. Glazunov, “Large-eddy simulation of turbulence with the use of a mixed dynamic localized closure: Part 1. Formulation of the problem, model description, and diagnostic numerical tests,” Izv., Atmos. Ocean. Phys. 45 (1), 5–24 (2009).CrossRefGoogle Scholar
  35. 35.
    H. Charnock, “Wind stress on a water surface,” Q. J. R. Meteorol. Soc. 81 (350), 639–640 (1955).CrossRefGoogle Scholar
  36. 36.
    S. S. Zilitinkevich, “On the computation of the basic parameters of the interaction between the atmosphere and the ocean,” Tellus 21 (1), 17–24 (1969).CrossRefGoogle Scholar
  37. 37.
    V. Sadovnichy, A. Tikhonravov, Vl. Voevodin, and V. Opanasenko, “‘Lomonosov’: Supercomputing at Moscow State University,” in Contemporary High Performance Computing: From Petascale Toward Exascale (CRC, Boca Raton, USA, 2013), pp. 283–307.Google Scholar
  38. 38.
    E. Atlaskin and T. Vihma, “Evaluation of NWP results for wintertime nocturnal boundary-layer temperatures over Europe and Finland,” Q. J. R. Meteorol. Soc. 138 (667), 1401–1680 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Research Computing CenterMoscow State UniversityMoscowRussia
  3. 3.Moscow State UniversityMoscowRussia

Personalised recommendations