Izvestiya, Atmospheric and Oceanic Physics

, Volume 51, Issue 2, pp 214–223 | Cite as

Transformation of surface waves over a bottom step

  • A. A. Kurkin
  • S. V. Semin
  • Yu. A. Stepanyants


We analyze in detail the problem of the transformation of surface gravity waves over a bottom step in a basin of arbitrary depth in the linear approximation. We found that strict analytical results can be obtained only when a denumerable set of modes condensed near the step is taken into account. At the same time, one can use the formulas suggested in this work for the practical calculations. They provide an accuracy of 5% for the wave transmission coefficient. The specific peculiarities of transformation coefficients are discussed, including their nonmonotonic dependence on the parameters, asymptotic behavior at strong depth variations, etc. The data of a direct numerical simulation of wave transformation over a step are presented, which are compared with the exact and approximate formulas. The coefficients of excitation of modes condensed near the step by an incident quasi-monochromatic wave are found. A relationship between the transformation coefficients that follows from the conservation law of wave energy flux is found.


surface waves wave transformation transmission coefficient reflection coefficient oceanic shelf bottom step evanescent modes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Lamb, Hydrodynamics (Cambridge Univ. Press., Cambridge, 1933).Google Scholar
  2. 2.
    E. N. Pelinovskii, Hydrodynamics of Tsunami Waves (IPF RAN, Nizhnii Novgorod, 1996) [in Russian].Google Scholar
  3. 3.
    E. F. Bartolomeusz, “The reflection of long waves at a step,” Proc. Phil. Soc. 54, 106–118 (1958).CrossRefGoogle Scholar
  4. 4.
    J. N. Newman, “Propagation of water waves over an infinite step,” J. Fluid Mech. 23 (2), 339–415 (1965).CrossRefGoogle Scholar
  5. 5.
    K. Takano, “Effets d’un obstacle parallelepipedique sur la propagation de la houle (The effects of a rectangular obstacle on wave propagation),” La Houille Blanche 15 (3), 247–267 (1960).CrossRefGoogle Scholar
  6. 6.
    K. Takano, “Effet d’un changement brusque de profondeur sur une houle irrotationelle (The effect of a sudden change in depth on an irrotational wave),” La mer 5 (2), 100–116 (1967).Google Scholar
  7. 7.
    S. R. Massel, “Harmonic generation by waves propagating over a submerged step,” Coastal Eng. 7, 357–380 (1983).CrossRefGoogle Scholar
  8. 8.
    S. R. Massel, Hydrodynamics of the Coastal Zone (Elsevier, Amsterdam, 1989).Google Scholar
  9. 9.
    J. W. Miles, “Surfañe-wave scattering matrix for a shelf,” J. Fluid Mech. 28 (4), 755–767 (1967).CrossRefGoogle Scholar
  10. 10.
    L. N. Sretenskii, Theory of Wave Motions of Fluid (Nauka, Moscow, 1977) [in Russian].Google Scholar
  11. 11.
    J. S. Marshal and P. M. Naghdi, “Wave reflection and transmission by steps and rectangular obstacles in channels of finite depth,” Theor. Comput. Fluid Dyn. 1, 287–301 (1990).CrossRefGoogle Scholar
  12. 12.
    A. R. Giniyatullin, A. A. Kurkin, S. V. Semin, and Y. A. Stepanyants, “Transformation of narrowband wavetrains of surface gravity waves passing over a bottom step,” Math. Modell. Nat. Processes 9 (5), 32–41 (2014).Google Scholar
  13. 13.
    L. M. Brekhovskikh and V. V. Goncharov, Introduction to Continuum Mechanics (Nauka, Moscow, 1982) [in Russian].Google Scholar
  14. 14.
    Yu. A. Stepanyants and A. L. Fabrikant, Propagation of Waves in Shear Flows (Nauka-Fizmatlit, Moscow, 1996) [in Russian].Google Scholar
  15. 15.
    J. Marshall, A. Adcroft, C. Hill, et al., “A finite volume, incompressible Navier-Stokes model for studies of the ocean on parallel computers,” J. Geophys. Res. 102, 5753–5766 (1997).CrossRefGoogle Scholar
  16. 16.
    J. Marshall, C. Hill, L. Perelman, and A. Adcroft, “Hydrostatic, quasi-hydrostatic, and non-hydrostatic ocean modeling,” J. Geophys. Res. 102 (C3), 5733–5752 (1997).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. A. Kurkin
    • 1
  • S. V. Semin
    • 1
  • Yu. A. Stepanyants
    • 1
    • 2
  1. 1.Alexeev Technical UniversityNizhnii NovgorodRussia
  2. 2.University of Southern QueenslandWest St. ToowoombaAustralia

Personalised recommendations