Izvestiya, Atmospheric and Oceanic Physics

, Volume 51, Issue 2, pp 127–137 | Cite as

Influence of baroclinicity in the atmospheric boundary layer and Ekman friction on the surface wind speed during cold-air outbreaks in the Arctic

  • D. G. Chechin
  • E. V. Zabolotskikh
  • I. A. Repina
  • B. Shapron


Extreme cases of cold-air outbreaks in the Arctic during spring 2013 are identified using MODIS images from Terra and Aqua satellites. Spatial variability of the surface wind speed during considered cases of cold-air outbreaks is quantified using the ERA Interim reanalysis and data retrieved from the satellite microwave radiometer AMSR2. To explain the observed variability of wind speed in the atmospheric boundary layer (ABL) the contributions of baroclinicity in the ABL and Ekman friction are quantified. For this purpose diagnostic relationships based on the concept of a mixed-layer model are used. It is demonstrated that baroclinic component of the geostrophic wind caused by the horizontal temperature gradients in the ABL over the open water has a strong effect on the spatial variability of wind speed during considered cases of cold-air outbreaks.


atmospheric boundary layer cold-air outbreaks baroclinicity surface wind speed remote sensing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Brümmer, “Boundary-layer modification in winter-time cold-air outbreaks from the Arctic sea ice,” Boundary-Layer Meteorol. 80 (1), 109–125 (1996).CrossRefGoogle Scholar
  2. 2.
    Polar Lows: Mesoscale Weather Systems in the Polar Regions, Ed. by E. A. Rasmussen and J. Turner (Cambridge University Press, Cambridge, 2003).Google Scholar
  3. 3.
    S. Gronas and P. Skeie, “A case study of strong winds at an Arctic front,” Tellus A 51, 865–879 (1999).CrossRefGoogle Scholar
  4. 4.
    D. G. Chechin, C. Lupkes, I. A. Repina, and V. M. Gryanik, “Idealized dry quasi 2-D mesoscale simulations of cold-air outbreaks over the marginal sea ice zone with fine and coarse resolution,” J. Geophys. Res. 118 (D16), 8787–8813 (2013).Google Scholar
  5. 5.
    J. E. Overland, R. M. Reynolds, and C. H. Pease, “A model of the atmospheric boundary layer over the marginal ice zone,” J. Geophys. Res. 88 (C5), 2836–2840 (1983).CrossRefGoogle Scholar
  6. 6.
    R. H. Langland, P. M. Tag, and R. W. Fett, “An ice breeze mechanism for boundary-layer jet,” Boundary-Layer Meteorol. 48 (1), 177–195 (1989).CrossRefGoogle Scholar
  7. 7.
    M. K. Pichugin and L. M. Mitnik, “Kholodnye vtorzheniya nad Beringovym morem: sputnikovyi mul’tisensornyi analiz,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 6 (2), 172–179 (2009).Google Scholar
  8. 8.
    M. Gryschka, C. Drüe, D. Etling, and S. Raasch, “On the influence of sea-ice inhomogeneities onto roll convection in cold-air outbreaks,” Geophys. Res. Lett. 35 (23), L23804 (2008).CrossRefGoogle Scholar
  9. 9.
    D. P. Dee, S. M. Uppala, A. I. Simmons, et al., “The ERA-Interim reanlysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137, 553–597 (2011).CrossRefGoogle Scholar
  10. 10.
    L. M. Mitnik and M. L. Mitnik, “An algorithm for reproducing the near-surface velocity from measurements by the AMSR-E microwave radiometer of the Aqua satellite,” Issled. Zemli Kosmosa, No. 6, 34–44 (2011).Google Scholar
  11. 11.
    A. R. Brown, “Large-eddy simulation and parametrization of the baroclinic boundary layer,” Q. J. R. Meteorol. Soc. 122 (536), 1779–1798 (1996).CrossRefGoogle Scholar
  12. 12.
    D.-W. Byun and S. P. S. Arya, “A study of mixed-layer momentum evolution,” Atmos. Environ. 20 (4), 715–728 (1986).CrossRefGoogle Scholar
  13. 13.
    Y. Quilfen, C. Prigent, B. Chapron, et al., “The potential of QuikSCAT and WindSat observations for the estimation of sea surface wind vector under severe weather conditions,” J. Geophys. Res. 112 (C9), C09023 (2007).Google Scholar
  14. 14.
    E. V. Zabolotskikh, L. M. Mitnik, and B. Chapron, “New approach for severe marine weather study using satellite passive microwave sensing,” Geophys. Res. Lett. 40 (13), 3347–3350 (2013).CrossRefGoogle Scholar
  15. 15.
    E. Kolstad, T. Bracegirdle, and I. Seierstad, “Marine cold-air outbreaks in the North Atlantic: Temporal distribution and associations with large-scale atmospheric circulation,” Clim. Dyn. 33 (2), 187–197 (2009).CrossRefGoogle Scholar
  16. 16.
    E. Kolstad and T. Bracegirdle, “Marine cold-air outbreaks in the future: An assessment of IPCC AR4 model results for the Northern Hemisphere,” Clim. Dyn. 30 (7), 871–885 (2008).CrossRefGoogle Scholar
  17. 17.
    A. P. Makshtas and V. F. Timachev, “Parameterization of energy-exchange processes in the near-edge zone of drifting ices,” in Regularities of Large-Scale Processes in the Norwegian Energy-Active Zone and Adjacent Areas, Ed. by G. V. Alekseev and P. V. Bogorodski (Gidrometeoizdat, St. Petersburg, 1994), pp. 164–178 [in Russian].Google Scholar
  18. 18.
    I. A. Renfrew and J. C. King, “A simple model of the convective internal boundary layer and its application to surface heat flux estimates within polynyas,” Boundary-Layer Meteorol. 94 (3), 335–356 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • D. G. Chechin
    • 1
    • 2
  • E. V. Zabolotskikh
    • 2
  • I. A. Repina
    • 1
    • 2
    • 3
  • B. Shapron
    • 2
    • 4
  1. 1.Obukhov Institute of Atmospheric Physics RASMoscowRussia
  2. 2.Russian State Hydrometeorological UniversitySt.-PetersburgRussia
  3. 3.Space Research Institute RASMoscowRussia
  4. 4.French Research Institute for Exploitation of the Sea Pointe du DiablePlouzaneRussia

Personalised recommendations