Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 51, Issue 1, pp 49–56 | Cite as

Chlorine nitrate in the atmosphere over St. Petersburg

  • Ya. A. Virolainen
  • Yu. M. Timofeyev
  • A. V. Poberovskii
  • O. Kirner
  • M. Hoepfner
Article

Abstract

Ground-based measurements of the total chlorine nitrate (ClONO2) in the atmosphere have been taken for the first time in Russia using the Bruker IFS-125HR infrared (IR) Fourier spectrometer (FS). The average error of the total ClONO2 measurements, performed in 2009–2012 in Peterhof, is (25 ± 10)%. The results have been compared with measurements performed using similar devices at the NDACC network, Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) satellite measurements, and the total ClONO2 numerical simulation (performed using the EMAC chemical climatic model). The total ClONO2 seasonal variations are similar for three considered observation stations (Peterhof, Kiruna, and Eureka) with the maximum in February-March, which is more pronounced at higher latitudes. High correlations (R = 0.7–0.9) between the MIPAS satellite data, ground-based measurements near St. Petersburg, and the values calculated using the EMAC model have been revealed. The modeling data are on average smaller than the data of the ground-based and satellite measurements. An analysis of the seasonal variations in the total ClONO2 monthly average values in the St. Petersburg region indicated that this difference is caused by the fact that the model underestimated the maximal total ClONO2 values in the atmosphere.

Keywords

ozone-depleting gases chlorine nitrate Fourier spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Solomon, “Stratospheric ozone depletion: A review of concepts and history,” Rev. Geophys. 37(3), 275–316 (1999).CrossRefGoogle Scholar
  2. 2.
    R. Nassar, P. F. Bernath, C. D. Boone, et al., “A global inventory of stratospheric chlorine in 2004,” J. Geophys. Res. 111, D22312 (2006). doi: 10.1029/2006JD007073CrossRefGoogle Scholar
  3. 3.
    D. G. Murcray, A. Goldman, F. H. Murcray, et al., “Stratospheric distribution of ClONO2,” Geophys. Res. Lett. 6(11), 857–859 (1979).CrossRefGoogle Scholar
  4. 4.
    R. Zander, C. P. Rinsland, C. B. Farmer, et al., “Observation of several chlorine nitrate (ClONO2) bands in stratospheric infrared spectra,” Geophys. Res. Lett. 13(8), 757–760 (1986).CrossRefGoogle Scholar
  5. 5.
    C. P. Rinsland, M. R. Gunson, R. J. Salawitch, et al., “ATMOS/ATLAS-3 measurements of stratospheric chlorine and reactive nitrogen partitioning inside and outside the November 1994 Antarctic Vortex,” Geophys. Res. Lett. 23(17), 2365–2368 (1996).CrossRefGoogle Scholar
  6. 6.
    H. Nakajima, T. Sugita, H. Irie, et al., “Measurements of ClONO2 by the Improved Limb Atmospheric Spectrometer (ILAS) in high-latitude stratosphere: New products using version 6.1 data processing algorithm,” J. Geophys. Res. 111, D11S01 (2006). doi: 10.1029/2005JD006441Google Scholar
  7. 7.
    M. Höpfner, T. von Clarmann, H. Fischer, et al., “Validation of MIPAS ClONO2 measurements,” Atmos. Chem. Phys. 7(1), 257–281 (2007).CrossRefGoogle Scholar
  8. 8.
    E. Mahieu, R. Zander, P. Duchatelet, et al., “Comparisons between ACE-FTS and ground-based measurements of stratospheric HCl and ClONO2 loadings at northern latitudes,” Geophys. Res. Lett. 32(15), L15S08 (2005). doi: 10.1029/2005GL022396Google Scholar
  9. 9.
    R. Zander and P. Demoulin, “Spectroscopic evidence for the presence of the ν4-Q branch of chlorine nitrate (ClONO2) in ground-based infrared solar spectra,” J. Atmos. Chem. 6(3), 191–200 (1998).CrossRefGoogle Scholar
  10. 10.
    C. B. Farmer, G. C. Toon, P. W. Schaper, et al., “Stratospheric trace gases in the spring 1986 Antarctic atmosphere,” Nature, No. 329, 126–130 (1987).Google Scholar
  11. 11.
    Network for the Detection of Atmospheric Composition Change. http://ndacc.org/.
  12. 12.
    A. V. Poberovskii, “High-resolution ground measurements of the IR spectra of solar radiation,” Atmos. Oceanic Opt. 23(2), 161–163 (2010).CrossRefGoogle Scholar
  13. 13.
    H. Fischer, M. Birk, C. Blom, et al., “MIPAS: An instrument for atmospheric and climate research,” Atmos. Chem. Phys., 8(8), 2151–2188 (2008).CrossRefGoogle Scholar
  14. 14.
    P. Jöckel, H. Tost, A. Pozzer, et al., “The atmospheric chemistry general circulation model ECHAM5/MESSy1: Consistent simulation of ozone from the surface to the mesosphere,” Atmos. Chem. Phys., 6(12), 5067–5104 (2006).CrossRefGoogle Scholar
  15. 15.
    F. Hase, J. W. Hannigan, M. T. Coffey, et al., “Intercomparison of retrieval codes used for the analysis of high-resolution ground-based FTIR measurements,” J. Quant. Spectrosc. Radiat. Transfer 87(1), 25–52 (2004).CrossRefGoogle Scholar
  16. 16.
    L. Lait, P. Newman, and R. Schoeberl, Using the Goddard Automailer 2005. http://code916.gsfc.nasa.gov/Dataservices.
  17. 17.
    M. Park, W. J. Randel, D. E. Kinnison, et al., “Hydrocarbons in the upper troposphere and lower stratosphere observed from ACE-FTS and comparisons with WACCM,” J. Geophys. Res.: Atmos. 118(4), 1964–1980 (2013).Google Scholar
  18. 18.
    D. Phillips, “A technique for the numerical solution of certain integral equations of the first kind,” J. Assoc. Comput. Mach. 9(1), 84–97 (1962).CrossRefGoogle Scholar
  19. 19.
    A. N. Tikhonov, “On the solution of ill-posed problems and the regularization method,” Dokl. Akad. Nauk SSSR 151(3), 501–504 (1963).Google Scholar
  20. 20.
    H. Norton and R. Beer, “New apodizing functions for Fourier spectrometry,” J. Opt. Soc. Am. 66(3), 259–264 (1976).CrossRefGoogle Scholar
  21. 21.
    M. Schneider and F. Hase, “Technical note: Recipe for monitoring of total ozone with a precision of around 1 DU applying mid-infrared solar absorption spectra,” Atmos. Chem. Phys. 8(1), 63–71 (2008).CrossRefGoogle Scholar
  22. 22.
    L. S. Rothman, I. E. Gordon, A. Barbe, et al., “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110(9–10), 533–572.Google Scholar
  23. 23.
    R. Kohlhepp, S. Barthlott, T. Blumenstock, et al., “Trends of HCl, ClONO2, and HF column abundances from ground-based FTIR measurements in Kiruna (Sweden) in comparison with KASIMA model calculations,” Atmos. Chem. Phys. 11(10), 4669–4677 (2011).CrossRefGoogle Scholar
  24. 24.
    J. W. Hannigan, M. T. Coffey, and A. Goldman, “Semiautonomous FTS observation system for remote sensing of stratospheric and tropospheric gases,” J. Atmos. Oceanic Technol. 26(9), 1814–1828 (2009).CrossRefGoogle Scholar
  25. 25.
    T. von Clarmann, M. Höpfner, S. Kellmann, et al., “Retrieval of temperature, H2O, O3, HNO3, CH4, N2O, ClONO2 and ClO from MIPAS reduced resolution nominal mode limb emission measurements,” Atmos. Meas. Technol. 2(1), 159–175 (2009).CrossRefGoogle Scholar
  26. 26.
    A. T. Brown, M. P. Chipperfield, C. Boone, et al., “Trends in atmospheric halogen containing gases since 2004,” J. Quant. Spectrosc. Radiat. Transfer 112(16), 2552–2566.Google Scholar
  27. 27.
    G. Wetzel, H. Oelhaf, O. Kirner, et al., “Diurnal variations of reactive chlorine and nitrogen oxides observed by MIPAS-B inside the January 2010 Arctic vortex,” Atmos. Chem. Phys. 12(14), 6581–6592 (2012).CrossRefGoogle Scholar
  28. 28.
    R. Kohlhepp, R. Ruhnke, M. P. Chipperfield, et al., “Observed and simulated time evolution of HCl, ClONO2, and HF total column abundances,” Atmos. Chem. Phys. 12(7), 3527–3556 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Ya. A. Virolainen
    • 1
  • Yu. M. Timofeyev
    • 1
  • A. V. Poberovskii
    • 1
  • O. Kirner
    • 2
  • M. Hoepfner
    • 3
  1. 1.St. Petersburg State UniversityPeterhof, St. PetersburgRussia
  2. 2.Karlsruhe Institute of TechnologySteinbuch Center for ComputingEggenstein-LeopoldshafenGermany
  3. 3.Karlsruhe Institute of TechnologyInstitute for Meteorology and Climate Research (IMC)Eggenstein-LeopoldshafenGermany

Personalised recommendations