Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 50, Issue 6, pp 576–582 | Cite as

Background component of carbon dioxide concentration in the near-surface air

  • V. N. Aref’evEmail author
  • N. Ye. Kamenogradsky
  • F. V. Kashin
  • A. V. Shilkin
Article

Abstract

The data on measurements of carbon dioxide concentrations in the near-surface air in the territory of the European part of Russia using Fourier transform spectroscopy are presented. Analysis of these data showed that temporal variations in CO2 concentrations included ∼18% of relatively high, short-lived concentrations that appear during temperature inversions and fires. The measurement results are separated into the regional natural background CO2 concentration and the anthropogenic admixture. The seasonal component is distinguished in the background CO2 concentration. The maxima and minima of seasonal CO2 variations fall most often within February and July, respectively, at an average amplitude of 20.2 ± 3.8 ppm. The coefficient of pair correlation between seasonal CO2 concentrations and temperature is −0.85. Spectral analysis revealed a large number of composite oscillations of the background CO2 concentration, from 2 to 126 months in period. A simple model using the parameters of these oscillations describes the temporal variations in background CO2 concentration with an error of less than 1%. The anthropogenic admixture of CO2 into the atmosphere consists of a random component and a long-term trend. For 13 years of observations, the anthropogenic admixture was ∼33 ppm at an average growth rate of ∼2.04 ppm/yr.

Keywords

atmosphere carbon dioxide concentration background addition seasonal addition anthropogenic admixture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ch. D. Keeling, T. B. Harris, and E. M. Wilkins, “Concentration of atmospheric carbon dioxide at 500 and 700 millibars,” J. Geophys. Res. 73(14), 4511–4528 (1968).CrossRefGoogle Scholar
  2. 2.
    B. Bolin and W. Bischof, “Variations of the carbon dioxide content of the atmosphere in the Northern Hemisphere,” Tellus 22(4), 431–442 (1970).CrossRefGoogle Scholar
  3. 3.
    Anthropogenic Climate Changes, Ed. by M.I. Budyko and Yu. A. Izrael’ (Gidrometeoizdat, Leningrad, 1987) [in Russian].Google Scholar
  4. 4.
    Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by R. K. Pachauri, A. Reisinger, et al. (IPCC, Geneva, 2007).Google Scholar
  5. 5.
    J. G. Canadell, C. Le Quéré, M. R. Raupach, C. B. Field, E. T. Buitenhuis, P. Ciais, T. J. Conway, N. P. Gillett, R. A. Houghton, and G. Marland, “Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks,” Proc. Natl. Acad. Sci. U. S. A. 104(47), 18866–18870 (2007). doi: 10.1073/pnas.0702737104CrossRefGoogle Scholar
  6. 6.
    D. J. Hofmann, J. H. Butler and P. P. Tans, “A new look at atmospheric carbon dioxide,” Atmos. Environ. 43(12), 2084–2086 (2009).CrossRefGoogle Scholar
  7. 7.
  8. 8.
    F. V. Kashin, V. N. Aref’ev, Yu. I. Baranov, E. L. Baranova, G. I. Bugrim, and N. E. Kamenogradsky, “Variability of the methane content in the atmospheric surface layer and in the atmospheric column,” Izv., Atmos. Ocean. Phys. 40(3), 356–361 (2004).Google Scholar
  9. 9.
    F. V. Kashin, Data on carbon dioxide measurements in the atmospheric boundary layer over Obninsk, in Proceedings of the International Symposium of CIS countries “Atmospheric Radiation and Dynamics” (St. Petersburg State University, St. Petersburg, 2009) [in Russian].Google Scholar
  10. 10.
    R. M. Akimenko, V. N. Aref’ev, Yu. I. Baranov, G. I. Bugrim, N. I. Sizov, and L. B. Upenek, “Carbon oxide in the surface air (Obninsk monitoring station),” Izv., Atmos. Ocean. Phys. 46(1), 45–54 (2010).CrossRefGoogle Scholar
  11. 11.
    F. V. Kashin, “Variations of CO2 mixing ratios in the air near the ground in the European territory of Russia,” J. Environ. Sci. Eng. A 2(9), 531–536 (2013).Google Scholar
  12. 12.
    V. N. Ivanov, “The use of the high-altitude meteorological mast at the Institute of Experimental Meteorology for atmospheric boundary layer studies,” Tr. Inst. Exp. Meteorol., No. 12, 88–131 (1970).Google Scholar
  13. 13.
  14. 14.
    S. Page, F. Siegert, J. Rieley, H. Boehm, A. Jaya, and S. Limin, “The amount of carbon released from peat and forest fires in Indonesia during 1997,” Nature 420(6911), 61–65 (2002).CrossRefGoogle Scholar
  15. 15.
    Yu. L. Vorob’ev, V. A. Akimov, and Yu. I. Sokolov, Forest Fires in Russia: The State and Problems (DEKSPRESS, Moscow, 2004) [in Russian].Google Scholar
  16. 16.
  17. 17.
    N. F. Elansky, I. I. Mokhov, I. B. Belikov, E. V. Berezina, A. S. Elokhov, V. A. Ivanov, N. V. Pankratova, O. V. Postylyakov, A. N. Safronov, A. I. Skorokhod, and R. A. Shumsky, “Gas composition of the surface air in Moscow during the extreme summer of 2010,” Dokl. Earth Sci. 437(1), 357–362 (2011).CrossRefGoogle Scholar
  18. 18.
    A. A. Vinogradova, E. I. Fedorova, I. B. Belikov, et al., “Temporal variations in carbon dioxide and methane concentrations under urban conditions,” Izv., Atmos. Ocean. Phys. 43(5), 699–611 (2007).CrossRefGoogle Scholar
  19. 19.
    F. V. Kashin, N. N. Paramonova, and N. I. Privalov, “Results of monitoring of carbon dioxide and methane concentrations near the surface at Antarctic station of Novolazarevskaya in 2007–2009,” in Meteorological and Geophysical Studies, Ed. by G. V. Alekseev (Paulsen, Moscow, 2011), pp. 170–177 [in Russian].Google Scholar
  20. 20.
    K. W. Thoning, P. P. Tans, and W. D. Komhyr, “Atmospheric carbon dioxide at Mauna Loa Observatory. 2. Analysis of the NOAA GMCC Data, 1974–1985,” J. Geophys. Res. 94, 8549–8565 (1989).CrossRefGoogle Scholar
  21. 21.
    V. A. Rozhkov, Theory of Probability of Random Events, Variables, and Functions with Hydrometeorological Examples (Progress-Pogoda, St. Petersburg, 1996), Vol. 1 [in Russian].Google Scholar
  22. 22.
    Ye. P. Borisenkov, A. V. Tsvetkov, and J. A. Eddy, “Combined effect of earth orbit perturbations and solar activity on terrestrial insolation,” J. Atmos. Sci. 42(9), 933–940 (1985).CrossRefGoogle Scholar
  23. 23.
    C. D. Keeling, T. P. Whorf, M. Wahlen, and J. van der Plicht, “Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980,” Nature 375(6533), 666–670 (1995).CrossRefGoogle Scholar
  24. 24.
    A. S. Monin and Yu. A. Shishkov, “The 5-year cycle of global weather,” 358(1), 128–131 (1998).Google Scholar
  25. 25.
    Yu. R. Rivin, “The 22-year cycle of geomagnetic activity,” Int. J. Geomagn. Aeron. 1(2), 111–116 (1999).Google Scholar
  26. 26.
    V. V. Ivanov, “Periodic weather and climate variations,” Phys.-Usp. 45(7), 719–752 (2002).CrossRefGoogle Scholar
  27. 27.
    K. Labitzke, “The global signal of the 11-year sunspot cycle in the atmosphere: When do we need the QBO?,” Meteorol. Z. 12(4), 209–216 (2003).CrossRefGoogle Scholar
  28. 28.
    C. K. Chui, An Introduction to Wavelets(Academic Press, San Diego, 1992; Mir, Moscow, 2001).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. N. Aref’ev
    • 1
    Email author
  • N. Ye. Kamenogradsky
    • 1
  • F. V. Kashin
    • 1
  • A. V. Shilkin
    • 1
  1. 1.Federal State Budgetary Institution, Research and Production Association “Typhoon”Kaluga oblast, ObninskRussia

Personalised recommendations