Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 49, Issue 4, pp 432–438 | Cite as

Consequences of powerful volcanic eruptions according to dendrochronological data

  • E. A. Kasatkina
  • O. I. Shumilov
  • M. Timonen
  • A. G. Kanatjev
Article
  • 135 Downloads

Abstract

For the first time we identify the peculiarities of the effect of the most powerful (VEI > 5) volcanic eruptions on the regional climate of the Murmansk region on the basis of Kola Peninsula dendrochronological data for a period of more than 560 years. The analysis was based on the tree-ring chronology covering the period from 1445 to 2005. This chronology was derived from Pinus sylvestris samples collected near the northern tree line at Loparskaya station (68°37′ N; 33°14′ E). The data were processed using modern techniques adopted in dendrochronology (cross dating and standardization). We reveal a significant decrease in the radial tree-ring growth over 8 years (on average) after the eruptions; then its value is restored to the normal level. This finding will help evaluate the response of the regional climate system to external climate forcings in this economically important region for Russia.

Keywords

volcanic activity dendroclimatology tree-ring chronologies Kola peninsula 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. I. Shumilov, E. A. Kasatkina, O. M. Raspopov, E. Turunen, and G. Jakobi, “An estimation of the climatic response to the variations in solar and volcanic activity,” Geomagn. Aeron. 40(6), 687–691 (2000).Google Scholar
  2. 2.
    D. T. Shindell, G. A. Schmidt, R. L. Miller, and M. E. Mann, “Volcanic and solar forcing of climate change during the preindustrial era,” J. Clim. 16, 4094–4107 (2003).CrossRefGoogle Scholar
  3. 3.
    W. Soon and S. Baliunas, “Proxy climatic and environmental changes of the past 1000 years,” Clim. Res. 23, 89–100 (2003).CrossRefGoogle Scholar
  4. 4.
    Climate Change 2007: The Physical Science Basis, Ed. by S. Solomon, D. Qin, M. Manning, et al. (Cambridge University Press, Cambridge, New York, 2007).Google Scholar
  5. 5.
    Yu. A. Izrael’, “Efficient preservation of climate at the current level as the main objective of solving the climate problem,” Meteorol. Gidrol., No. 10, 5–9 (2005).Google Scholar
  6. 6.
    P. J. Crutzen, “Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma?,” Clim. Change 77, 211–219 (2006).CrossRefGoogle Scholar
  7. 7.
    A. V. Eliseev, I. I. Mokhov, and A. A. Karpenko, “Global warming mitigation by means of controlled aerosol emissions into the stratosphere: global and regional peculiarities of temperature response as estimated in IAP RAS CM simulations,” Atmos. Oceanic Opt. 22(4), 388–395 (2009).CrossRefGoogle Scholar
  8. 8.
    A. V. Eliseev and I. I. Mokhov, “Uncertainty of climate response to natural and anthropogenic forcings due to different land use scenarios,” Adv. Atmos. Sci. 28, 1215–1232 (2011).CrossRefGoogle Scholar
  9. 9.
    L. Oman, A. Robock, G. L. Stenchikov, T. Thordarson, D. Koch, D. Shindell, and C. Gao, “Modeling the distribution of the volcanic aerosol cloud from the 1783–1784 Laki eruption,” J. Geophys. Res. 111, D12209 (2006).CrossRefGoogle Scholar
  10. 10.
    M. R. Rampino and S. Self, “Historic eruptions of Tambora (1815), Krakatau (1883), and Agung (1963), their stratospheric aerosols and climatic impact,” Quat. Res. 18, 127–143 (1982).CrossRefGoogle Scholar
  11. 11.
    R. B. Stothers, “The great Tambora eruption in 1815 and its aftermath,” Science 224, 1191–1198 (1984).CrossRefGoogle Scholar
  12. 12.
    W. B. Lyons, P. A. Mayewski, M. Spencer, and M. S. Twickler, “A Northern Hemisphere volcanic chemistry record (1869–1984) and climatic implication using a south Greenland ice core,” Ann. Glaciol. 14, 176–182 (1990).Google Scholar
  13. 13.
    A. Robock, “Volcanic eruptions and climate,” Rev. Geophys. 38, 191–219 (2000).CrossRefGoogle Scholar
  14. 14.
    T. M. L. Wigley, “ENSO, volcanoes and record-breaking temperatures,” Geophys. Res. Lett. 27, 4101–4104 (2000).CrossRefGoogle Scholar
  15. 15.
    A. V. Eliseev and I. I. Mokhov, “Influence of volcanic activity on climate change in the past several centuries: Assessments with a climate model of intermediate complexity,” Izv., Atmos. Ocean. Phys. 44(6), 671–683 (2008).CrossRefGoogle Scholar
  16. 16.
    V. Brovkin, S. J. Lorenz, J. Jungclaus, T. Raddatz, C. Timmreck, C. H. Reick, J. Segschneider, and K. Six, “Sensitivity of a coupled climate-carbon cycle model to large volcanic eruptions during the last millennium,” Tellus 62B, 674–681 (2010).Google Scholar
  17. 17.
    J. P. Grattan and D. J. Charman, “Non-climatic factors and the environmental impact of volcanic volatiles: Implications of the Laki fissure eruption of AD 1783,” The Holocene 4(1), 101–106 (1994).CrossRefGoogle Scholar
  18. 18.
    N. Ogle, C. S. M. Turney, R. M. Kalin, L. O’Donnel, and C. J. Butler, “Palaeovolcanic forcing of short-term dendroisotopic depletion: The effect of decreased solar intensity on Irish oak,” Geophys. Res. Lett. 32(4), L04708 (2007).CrossRefGoogle Scholar
  19. 19.
    T. Thordarson and S. Self, “Atmospheric and environmental effects of 1783–1784 Laki eruption: A review and re-assessment,” J. Geophys. Res. 108, 4011–4019 (2003).CrossRefGoogle Scholar
  20. 20.
    D. J. Lary, M. Balluch, and S. Bekki, “Solar heating rates after a volcanic eruption: The importance of SO2 absorption,” Q. J. R. Meteorol. Soc. 120, 1683–1688 (1994).Google Scholar
  21. 21.
    M. P. McCormick, L. W. Thomason, and C. R. Trepte, “Atmospheric effects of the Mt. Pinatubo eruption,” Nature 373, 399–404 (1995).CrossRefGoogle Scholar
  22. 22.
    K. E. Trenberth and A. Dai, “Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering,” Geophys. Res. Lett. 34, L15702 (2007).CrossRefGoogle Scholar
  23. 23.
    V. C. LaMarche Jr. and K. K. Hirschboeck, “Frost rings in trees as records of major volcanic eruptions,” Nature 307, 121–126 (1984).CrossRefGoogle Scholar
  24. 24.
    L. A. Scuderi, “Tree-ring evidence for climatically effective volcanic eruptions,” Quat. Res. 34, 67–85 (1990).CrossRefGoogle Scholar
  25. 25.
    K. R. Briffa, P. D. Jones, F. H. Schweingruber, and T. J. Osborn, “Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years,” Nature 393, 450–452 (1998).CrossRefGoogle Scholar
  26. 26.
    G. C. Jacoby, N. V. Lovelius, O. I. Shumilov, O. M. Raspopov, J. M. Karbainov, D. C. Frank, “Longterm temperature trends and tree growth in Taymir region of Northern Siberia,” Quat. Res. 53, 312–318 (2000).CrossRefGoogle Scholar
  27. 27.
    B. R. Gervais and G. M. MacDonald, “Tree-ring and summer temperature response to volcanic aerosol forcing at the northern tree-line, Kola Peninsula, Russia,” The Holocene 11, 499–505 (2001).CrossRefGoogle Scholar
  28. 28.
    N. Y. Krakauer and J. Randerson, “Do volcanic eruptions enhance or diminish net primary production? Evidence from tree rings,” Global Biogeochem. Cycles 17(4), 1118 (2003).CrossRefGoogle Scholar
  29. 29.
    M. W. Salzer and M. K. Hughes, “Bristlecone pine tree rings and volcanic eruptions over the last 5000 yr,” Quat. Res. 67, 57–68 (2007).CrossRefGoogle Scholar
  30. 30.
    E. A. Vaganov and S. G. Shiyatov, “Dendroclimatic and dendroecological research in Northern Eurasia,” Lesovedenie, No. 4, 18–27 (2005).Google Scholar
  31. 31.
    R. M. Hantemirov, L. A. Gorlanova, and S. G. Shiya- tov, “Pathological tree-ring structures in Siberian Juniper (Juniperus sibirica Burgsd.) and their use for reconstructing extreme climatic events,” Russ. J. Ecol. 31(3), 167–173 (2000).CrossRefGoogle Scholar
  32. 32.
    O. I. Shumilov, E. A. Kasatkina, N. V. Lukina, I. Yu. Kirtsideli, and A. G. Kanatjev, “Paleoclimatic potential of the northernmost juniper trees in Europe,” Dendrochronologia 24(2–3), 123–130 (2007).CrossRefGoogle Scholar
  33. 33.
    E. A. Vaganov, K. A. Briffa, M. M. Naurzbaev, F. G. Schweingruber, S. G. Shiyatov, and V. V. Shishov, “Long-term climatic changes in the Arctic region of the Northern Hemisphere,” Dokl. Earth. Sci. 375(8), 1314–1317 (2000).Google Scholar
  34. 34.
    M. L. Roderick, G. D. Farquhar, S. L. Berry, and I. R. Noble, “On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation,” Oecologia 129, 21–30 (2001).CrossRefGoogle Scholar
  35. 35.
    L. Gu, D. D. Baldocchi, S. C. Wofsy, J. W. Munger, J. J. Michalsky, S. P. Urbanski, and T. A. Boden, “Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis,” Science 299, 2035–2038 (2003).CrossRefGoogle Scholar
  36. 36.
    L. M. Mercado, N. Bellouin, S. Sitch, O. Boucher, C. Huntingford, M. Wild, and P. M. Cox, “Impact of changes in diffuse radiation on the global land carbon sink,” Nature 457, 1014–1017 (2009).CrossRefGoogle Scholar
  37. 37.
    E. M. Volodin, S. V. Kostrykin, and A. G. Rya- boshapko, “Simulation of climate change induced by injection of sulfur compounds into the stratosphere,” Izv., Atmos. Ocean. Phys. 47(4), 430–438 (2011).CrossRefGoogle Scholar
  38. 38.
    D. S. Cohan, J. Xu, R. Greenwald, M. H. Bergin, and W. L. Chameides, “Impact of atmospheric aerosol light scattering and absorption on terrestrial net primary productivity,” Global Biogeochem. Cycles 16, 1090 (2002).CrossRefGoogle Scholar
  39. 39.
    I. I. Mokhov, A. V. Eliseev, P. F. Demchenko, V. Ch. Khon, M. G. Akperov, M. M. Arzhanov, A. A. Karpenko, V. A. Tikhonov, A. V. Chernokulsky, and E. V. Sigaeva, “Climate changes and their assessment based on the IAP RAS global model simulations,” Dokl. Earth Sci. 402(4), 591–595 (2005).Google Scholar
  40. 40.
    A. Angert, S. Biraud, C. Bonfils, and I. Fung, “CO2 seasonality indicates origins of post-Pinatubo sink,” Geophys. Res. Lett. 31, L11103 (2004).CrossRefGoogle Scholar
  41. 41.
    E. R. Cook and L. Kairiukstis, Methods of Dendrochronology (Kluwer Academic Publishing, Dordrecht, 1990).Google Scholar
  42. 42.
    R. L. Holmes, “Computer-assisted quality control in tree-ring dating and measurement,” Tree-Ring Bull. 44, 69–75 (1983).Google Scholar
  43. 43.
    V. V. Klimenko, V. A. Klimanov, A. A. Sirin, and A.M. Sleptsov, “Climate changes in the western part of European Russia in the late Holocene,” Dokl. Earth Sci. 377(2), 190–194 (2001).Google Scholar
  44. 44.
    J. P. Sadler and J. P. Grattan, “Volcanoes as agents of past environmental change,” Global Planet. Change 21, 181–196 (1999).CrossRefGoogle Scholar
  45. 45.
    C. G. Newhall and S. Self, “The volcanic explosivety index (VEI): An estimate of explosive magnitude for historical volcanism,” J. Geophys. Res. 87, 1231–1238 (1982).CrossRefGoogle Scholar
  46. 46.
    L. Siebert and T. Simkin, “Volcanoes of the world: An illustrated catalogue of Holocene volcanoes and their eruptions,” Smithsonian Institution, Global Volcanism Program Digital Information Series, GVP-3, 2002. http://www.volcano.si.edu/world/largeeruptions.cfm Google Scholar
  47. 47.
    G. S. Golitsyn, “Explanation of the frequency-volume dependence for volcanic eruptions,” Dokl. Earth Sci. 390(4), 585–587 (2003).Google Scholar
  48. 48.
    E. P. Borisenkov and V. M. Pasetskii, Record of Extraordinary Natural Phenomena over 2500 Years (Gidrometeoizdat, St. Petersburg, 2002) [in Russian].Google Scholar
  49. 49.
    A.-L. Chenet, F. Fluteau, and V. Courtillot, “Modelling massive sulphate aerosol pollution, following the large 1783 Laki basaltic eruption,” Earth Planet. Sci. Lett. 236, 721–731 (2005).CrossRefGoogle Scholar
  50. 50.
    J. P. Grattan and F. B. Pyatt, “Volcanic eruptions dry fogs and the European palaeoenvironmental record: Localized phenomena or hemispheric impacts?,” Global Planet. Change 21, 173–179 (1999).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • E. A. Kasatkina
    • 1
    • 2
  • O. I. Shumilov
    • 1
    • 2
  • M. Timonen
    • 3
  • A. G. Kanatjev
    • 1
    • 2
  1. 1.Institute of North Industrial Ecology Problems, Kola Science CenterRussian Academy of SciencesApatityRussia
  2. 2.Polar Geophysical Institute, Kola Science CenterRussian Academy of SciencesApatityRussia
  3. 3.Finnish Forest Research InstituteRovaniemiFinland

Personalised recommendations