Izvestiya, Atmospheric and Oceanic Physics

, Volume 49, Issue 3, pp 244–251 | Cite as

Parameterization of mesoscale stationary orographic wave forcing for use in numerical models of atmospheric dynamics

  • N. M. GavrilovEmail author
  • A. V. Koval


Polarization relations for mesoscale stationary orographic waves (MSOWs) and formulas for calculating vertical profiles of the total vertical flux of wave energy and amplitudes of horizontal speed are obtained by taking account the rotation of the atmosphere. Expressions are derived for the total wave heat flux, accelerations of the mean flow, and heat influxes generated by MSOWs. Calculations of the characteristics of MSOWs propagating in the atmosphere from the surface to the lower thermosphere are made. It was shown that MSOWs may significantly affect the circulation and thermal regime of the middle and upper atmosphere.


atmospheric dynamics mesoscale waves orography wave acceleration heat influx parametrization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. S. Scorer, “Theory of waves in the lee of mountains,” Quart. J. R. Meteorol. Soc. 75(323), 41–56 (1949).CrossRefGoogle Scholar
  2. 2.
    T. Beer, Atmospheric Waves (Wiley, New York, 1974).Google Scholar
  3. 3.
    S. D. Eckermann and P. Preusse, “Global measurements of stratospheric mountain waves from space,” Science 286, 1534–1537 (1999).CrossRefGoogle Scholar
  4. 4.
    P. Preusse, A. Dornbrack, S. D. Eckermann, M. Riese, B. Schaeler, J. T. Bacmeister, D. Broutman, and K. U. Grossman, “Space-based measurements of stratospheric mountain waves by CRISTA: 1. Sensitivity, analysis method, and a case study,” J. Geophys. Res. 107(D23), 8178 (2002). doi 10.1029/2001JD000699CrossRefGoogle Scholar
  5. 5.
    J. H. Jiang, D. L. Wu, and S. D. Eckermann, “Upper atmosphere research satellite (UARS) observation of mountain waves over the Andes,” J. Geophys. Res. 107(D20), 8273 (2002). doi 10.1029/2002JD002091CrossRefGoogle Scholar
  6. 6.
    S. Smith, J. Baumgardner, and M. Mendillo, “Evidence of mesospheric gravity-waves generated by orographic forcing in the troposphere,” Geophys. Res. Lett. 36, L08807 (2009). doi 10.1029/2008GL036936CrossRefGoogle Scholar
  7. 7.
    A. I. Semenov, M. V. Shagaev, and N. N. Shefov, “On the influence of orographic waves on the upper atmosphere,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 17(9), 982–984 (1981).Google Scholar
  8. 8.
    N. N. Shefov, N. N. Pertsev, M. V. Shagaev, and V. N. Yarov, “Orography-induced variations in the upper atmosphere emission,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 19(9), 920–926 (1983).Google Scholar
  9. 9.
    N. N. Shefov and N. N. Pertsev, “Orographic disturbances of upper atmosphere emissions,” in Handbook for Middle Atmosphere Program (MAP). Scientific Committee on Solar-Terrestrial Physics (SCOSTEP) (University of Illinois, Urbana, 1984), Vol. 10, pp. 171–175.Google Scholar
  10. 10.
    V. A. Sukhodoev, V. I. Perminov, L. M. Reshetov, et al., “Orographic effect in the upper atmosphere,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 25(9), 926–932 (1989).Google Scholar
  11. 11.
    V. A. Sukhodoev and V. N. Yarov, “Temperature variations of the mesopause in the leeward region of the Caucasus Ridge,” Geomagn. Aeron. 38(4), 545–548 (1998).Google Scholar
  12. 12.
    N. N. Shefov, A. I. Semenov, N. N. Pertsev, et al., “Spatial distribution of IGW energy inflow into the mesopause over the lee of a mountain ridge,” Geomagn. Aeron. 39(5), 620–627 (1999).Google Scholar
  13. 13.
    A. A. Blank, “Estimate for the temperature of heating induced by dissipation of leeward mountain waves,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 16(6), 643–646 (1980).Google Scholar
  14. 14.
    N. N. Pertsev, “Seasonal and height variations of orographically induced mesoscale fluctuations in the middle atmosphere,” Izv., Atmos. Ocean. Phys. 33(6), 722–728 (1997).Google Scholar
  15. 15.
    N. N. Pertsev, “Azimuthal anisotropy of windward mountain waves in the upper atmosphere,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 25(6), 585–591 (1989).Google Scholar
  16. 16.
    N. N. Pertsev, “Causes and consequences of temperature rise in the hydroxyl layer over mountains,” in Dynamics of the ionosphere (Gylym, Alma-Ata, 1991), Vol. 3, pp. 165–170 [in Russian].Google Scholar
  17. 17.
    N. M. Gavrilov, “Structure of the mesoscale variability of the troposphere and stratosphere found from radio refraction measurements via CHAMP satellites,” Izv., Atmos. Ocean. Phys. 43(4), 451–460 (2007).CrossRefGoogle Scholar
  18. 18.
    F. Lott and M. J. Miller, “A new subgrid-scale orographic drag parametrization: its formulation and testing,” Quart. J. R. Meteorol. Soc. 123(537), 101–127 (1997).CrossRefGoogle Scholar
  19. 19.
    J. F. Scinocca and N. A. McFarlane, “The parametrization of drag induced by stratified flow over anisotrophic orography,” Quart. J. R. Meteorol. Soc. 126(568), 2353–2393 (2000).CrossRefGoogle Scholar
  20. 20.
    N. M. Gavrilov, “Parametrization of the dynamical and thermal effect of steady-state internal gravity waves on the middle atmosphere,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 25(3), 271–278 (1989).Google Scholar
  21. 21.
    E. E. Gossard and W. H. Hooke, Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves: Their Generation and Propagation (Elsevier, Amsterdam/New York, 1975; Mir, Moscow, 1978).Google Scholar
  22. 22.
    D. S. Phillips, “Analytical surface pressure and drag for linear hydrostatic flow over three-dimensional elliptical mountains,” J. Atm. Sci. 41, 1073–1084 (1984).CrossRefGoogle Scholar
  23. 23.
    N. M. Gavrilov, A. I. Pogorel’tsev, and C. Jacobi, “Numerical modeling of the effect of latitude-inhomogeneous gravity waves on the circulation of the middle atmosphere,” Izv., Atmos. Ocean. Phys. 41(1), 9–18 (2005).Google Scholar
  24. 24.
    A. E. Hedin, “Extension of the MSIS Thermosphere Model into the middle and lower atmosphere,” J. Geophys. Res. 96(A2), 1159–1172 (1991). doi 10.1029/90JA02125CrossRefGoogle Scholar
  25. 25.
    R. Kistler, E. Kalnay, W. Collins, et al., “The NCEP-NCAR 50-year reanalysis,” Bull. Am. Meteorol. Soc. 82(2), 247–268 (2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.St. Petersburg State UniversityPetrodvorets, St. PetersburgRussia

Personalised recommendations