Izvestiya, Atmospheric and Oceanic Physics

, Volume 49, Issue 1, pp 16–32 | Cite as

Russian investigations in the field of atmospheric radiation in 2007–2010

Article
  • 68 Downloads

Abstract

A short survey prepared by the Russian Commission on Atmospheric Radiation contains the most significant results of works in the field of atmospheric-radiation studies performed in 2007–2010. It is part of the Russian National Report on Meteorology and Atmospheric Sciences prepared for the International Association on Meteorology and Atmospheric Sciences (IAMAS). During this period, the Russian Commission on Atmospheric Radiation, jointly with concerned departments and organizations, ran the conference “Physics and Education,” dedicated to the 75th anniversary of the Department of Physics at St. Petersburg State University (2007); the International Symposium of CIS Countries “Atmospheric Radiation and Dynamics” (2009); and the 5th International Conference “Atmospheric Physics, Climate, and Environment” (2010). At the conferences, central problems in modern atmosphere physics were discussed: radiative transfer and atmospheric optics; greenhouse gases, clouds, and aerosols; remote methods of measurements; and new measurement data. This survey presents five directions covering the whole spectrum of investigations performed in the field of atmospheric radiation.

Keywords

atmospheric radiation radiative transfer atmospheric spectroscopy radiation climatology aero-sol remote sensing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. P. Budak and B. A. Veklenko, “Boson Peak, Flickering Noise, Backscattering Processes and Radiative Transfer in Random Media,” J. Quant. Spectrosc. Radiat. Transfer 112(5), 864–875 (2011).CrossRefGoogle Scholar
  2. 2.
    I. V. Prokhorov, “On the Structure of the Continuity Set of the Solution to a Boundary-Value Problem for the Radiation Transfer Equation,” Math. Notes 86(1–2), 234–248 (2009).CrossRefGoogle Scholar
  3. 3.
    V. P. Budak and S. V. Korkin, “On the Solution of a Vectorial Radiative Transfer Equation in an Arbitrary Three-Dimensional Turbid Medium with Anisotropic Scattering,” J. Quant. Spectrosc. Radiat. Transfer 109(2), 220–234 (2008).CrossRefGoogle Scholar
  4. 4.
    V. P. Budak and S. V. Korkin, “The Spatial Polarization Distribution over the Dome of the Sky for Abnormal Irradiance of the Atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 109(8), 1347–1362 (2008).CrossRefGoogle Scholar
  5. 5.
    L. G. Sokoletsky, O. V. Nikolaeva, V. P. Budak, et al., “A Comparison of Numerical and Analytical Radiative Transfer Solutions for Plane Albedo of Natural Waters,” J. Quant. Spectrosc. Radiat. Transfer 110(13), 1132–1146 (2009).CrossRefGoogle Scholar
  6. 6.
    A. A. Kokhanovsky, V. P. Budak, C. Cornet, et al., “Benchmark Results in Vector Atmospheric Radiative Transfer,” J. Quant. Spectrosc. Radiat. Transfer 111(12–13), 1931–1946 (2010).CrossRefGoogle Scholar
  7. 7.
    V. P. Budak, D. A. Klyuykov, and S. V. Korkin, “Complete Matrix Solution of Radiative Transfer Equation for PILE of Horizontally Homogeneous Slabs,” J. Quant. Spectrosc. Radiat. Transfer 112(7), 1141–1148 (2011). doi 10.1016/j.jqsrt.2010.08.028CrossRefGoogle Scholar
  8. 8.
    V. P. Budak and S. V. Korkin, “The Aerosol Influence upon the Polarization State of the Atmosphere Solar Radiation,” Int. J. Remote Sens. 29(9), 2469–2506 (2008).CrossRefGoogle Scholar
  9. 9.
    V. P. Budak and S. V. Korkin, “Space-Angle Distribution of the Reflected Charged Particles Adjusted for Spin Calculation,” Radiat. Eff. Defects Solids 163, 761–765 (2008).CrossRefGoogle Scholar
  10. 10.
    V. V. Veretennikov, “The Method of Consequent Decomposition in the Theory of Lidar Sensing of Dense Media,” Atmos. Ocean. Opt. 20(11), 894–899 (2007).Google Scholar
  11. 11.
    G. M. Krekov, M. M. Krekova, A. A. Lisenko, et al., “Statistical Simulation of Transspectral Processes: LIF Reabsorption,” Atmos. Ocean. Opt. 21(12), 939–945 (2008).Google Scholar
  12. 12.
    S. M. Prigarin, A. G. Borovoi, I. A. Grishin, et al., “Statistical Simulation of Radiative Transfer in Optically Anisotropic Ice Clouds,” Atmos. Ocean. Opt. 20(3), 183–188 (2007).Google Scholar
  13. 13.
    T. Yu. Chesnokova, K. M. Firsov, and Yu. V. Voronina, “Application of Exponential Series in Modeling of Broadband Solar Radiation Fluxes in the Earth’s Atmosphere,” Atmos. Ocean. Opt. 20(9), 730–735 (2007).Google Scholar
  14. 14.
    Yu. V. Bogdanova and O. B. Rodimova, “On Thermodynamic Dependences of Coefficients in Expansion of Radiation Characteristics into Exponential Series,” Atmos. Ocean. Opt. 21(4), 247–251 (2008).Google Scholar
  15. 15.
    T. B. Zhuravleva, “Simulation of Solar Radation Transfer under Different Atmospheric Conditions. Part 1: Deterministic Atmosphere; Part 2: Stochastic Cloudiness,” Atmos. Ocean. Opt. 21(2), 81–95; (3), 163–175 (2008).Google Scholar
  16. 16.
    S. D. Tvorogov and O. B. Rodimova, “Calculation of the Transmission Function at Low Pressures,” Atmos. Ocean. Opt. 21(11), 797–803 (2008).Google Scholar
  17. 17.
    V. V. Belov and M. V. Tarasenkov, “Statistical Modeling of the Intensity of Light Fluxes Reflected by the Earth’s Spherical Surface,” Atmos. Ocean. Opt. 23(3), 197–203 (2010).CrossRefGoogle Scholar
  18. 18.
    T. B. Zhuravleva and A. A. Kokhanovskii, “Influence of Horizontal Inhomogeneity on Albedo and Absorptivity of Snow Cover,” Russ. Meteorol. Hydrol. 35(9), 590–595 (2010).CrossRefGoogle Scholar
  19. 19.
    S. D. Tvorogov, T. B. Zhuravleva, O. B. Rodimova, et al., “Theory of Series of Exponents and Its Application for Analysis of Radiation Processes,” in Problems of Global Climatology and Ecodynamics: Anthropogenic Effects on the State of Planet Earth, Ed. by A. P. Cracknell, V. F. Krapivin, and C. A. Varotsos (Springer/Praxis, Chichester, 2008), Ch. 9, pp. 211–240.CrossRefGoogle Scholar
  20. 20.
    V. V. Veretennikov, “Simultaneous Determination of Aerosol Microstructure and Refractive Index from Sun Photometry Data,” Atmos. Ocean. Opt. 20(3), 192–199 (2007).Google Scholar
  21. 21.
    T. Yu. Chesnokova and Yu. V. Voronina, “The Influence of Spectroscopic Data Quality on Modeling of Downward Solar UV Radiation Fluxes,” Atmos. Ocean. Opt. 21(7), 500–503 (2008).Google Scholar
  22. 22.
    K. M. Firsov and T. Yu. Chesnokova, “Sensitivity of Downward Long-Wave Radiative Fluxes to Water Vapor Continuum Absorption,” Atmos. Ocean. Opt. 23(6), 462–468 (2010).CrossRefGoogle Scholar
  23. 23.
    I. A. Gorchakova, G. V. Chlenova, and A. A. Vigasin, “On the Account of Continual Absorption of Water Vapor for Computing Heat Emission Fluxes,” Opt. Atmos. Okeana 22(6), 546–551 (2009).Google Scholar
  24. 24.
    T. Yu. Chesnokova, B. A. Voronin, A. D. Bykov, et al., “Calculation of Solar Radiation Atmospheric Absorption with Different H2O Spectral Line Data Banks,” J. Mol. Spectrosc. 256(1), 41–44 (2009).CrossRefGoogle Scholar
  25. 25.
    O. V. Nikolaeva, L. P. Bass, V. S. Kuznetsov, et al., “A New 1D Approximation for the Solution of 2D Radiative Transfer Problems,” J. Quant. Spectrosc. Radiat. Transfer 111, 634–642 (2010).CrossRefGoogle Scholar
  26. 26.
    O. V. Nikolaeva, L. P. Bass, T. A. Germogenova, et al., “Radiative Transfer in Horizontally and Vertically Inhomogeneous Atmospheres: Numerical Techniques,” in Light Scattering Reviews, Vol. 2 (Springer, Berlin, 2007), pp. 295–347.Google Scholar
  27. 27.
    O. V. Nikolaeva, L. P. Bass, T. A. Germogenova, et al., “Algorithms To Calculation of Radiative Fields from Localized Sources Via the Code Raduga-5.1(P),” Transp. Theory Stat. Phys. 36(4–6), 439–474 (2007).CrossRefGoogle Scholar
  28. 28.
    L. P. Bass, T. A. Germogenova, O. V. Nikolaeva, et al., “Numerical Simulation of Boundary Effects in Aerosol and Cloud Optics,” Atmos. Ocean. Opt. 22(1), 102–107 (2009).CrossRefGoogle Scholar
  29. 29.
    L. G. Sokoletsky, V. P. Budak, L. P. Bass, et al., “A Comparison of Numerical and Analytical Radiative-Transfer Solutions for Plane Albedo in Natural Waters,” J. Quant. Spectrosc. Radiat. Transfer 110(13), 1057–1206 (2009).CrossRefGoogle Scholar
  30. 30.
    O. V. Nikolaeva, L. P. Bass, V. S. Kuznetsov, et al., “Radiation Balance in a Cloudy Atmosphere with Account for the 3D Effects,” Atmos. Res. 98(1), 1–8 (2010).CrossRefGoogle Scholar
  31. 31.
    L. P. Bass and V. S. Kuznetsov, et al., “Parallel Algorithms for Simulation of Ultrashort Pulse Propagation in Turbid Media,” Nuovo Cim. A 33C(1), 39–46 (2010).Google Scholar
  32. 32.
    V. A. Yankovskii, V. A. Kuleshova, R. O. Manuilova, et al., “Retrieval of Total Ozone in the Mesosphere with a New Model of Electronic-Vibrational Kinetics of O3 and O2 Photolysis Products,” Izv., Atmos. Ocean. Phys. 43(4), 514–525 (2007).CrossRefGoogle Scholar
  33. 33.
    V. A. Yankovskii and A. S. Babaev, “Photolysis of O3 at Hartley, Chappuis, Huggins, and Wulf Bands in the Middle Atmosphere: Vibrational Kinetics of Oxygen Molecules O2(X 3Σg, ν ≤ 35),” Atmos. Ocean. Opt. 24(1), 6–16 (2011CrossRefGoogle Scholar
  34. 34.
    V. A. Kuleshova and V. A. Yankovsky, “Model of the Electronic-Vibrational Kinetics of O2 and O3 Photolysis in the Earth’s Middle Atmosphere: Analysis of Sensitivity,” Atmos. Ocean. Opt. 20(7), 548–556 (2007).Google Scholar
  35. 35.
    A. G. Feofilov, A. A. Kutepov, M. Garcia-Comas, et al., “Daytime SABER/TIMED Observations of Water Vapor in the Mesosphere: Retrieval Approach and First Results,” Atm. Chem. Phys. 9(21), 8139–8158 (2009).CrossRefGoogle Scholar
  36. 36.
    V. P. Ogibalov, “Radiative Transfer in SO2 Bands in the Near UV-Range with Radiation Absorption in the Continuum by Aerosol Particles in the Martian Atmosphere,” Vestn. S.-Peterb. Univ., Ser. 4: Fiz., Khim., No. 3, 27–36 (2008).Google Scholar
  37. 37.
    V. P. Ogibalov, “Using the Transport Approximation for Accounting of Radiation Scattering by Aerosol Particles in the Problem of Nonuniform Emission in Infrared Bands of SO2 in the Martian Atmosphere,” Vestn. S.-Peterb. Univ., Ser. 4: Fiz., Khim., No. 4, 38–48 (2009).Google Scholar
  38. 38.
    O. M. Lyulin, V. I. Perevalov, J.-Y. Mandin, et al., “Line Intensities of Acetylene: Measurements in the 2.5-μm Spectral Region and Global Modeling in the Δp = 4 and 6 Series,” J. Quant. Spectrosc. Radiat. Transfer 103, 496–523 (2007).CrossRefGoogle Scholar
  39. 39.
    O. M. Lyulin, D. Jacquemart, N. Lacome, et al., “Line Parameters of Acetylene in the 1.9 and 1.7 μm Spectral Regions,” J. Quant. Spectrosc. Radiat. Transfer 109, 1856–1874 (2008).CrossRefGoogle Scholar
  40. 40.
    O. M. Lyulin, D. Jacquemart, N. Lacome, et al., “Line Parameters of 15N2 16O from Fourier Transform Measurements in the 5800–7600 cm−1 Region and Global Fitting of Line Positions from 1000 to 7600 cm−1,” J. Quant. Spectrosc. Radiat. Transfer 111(3), 345–356.Google Scholar
  41. 41.
    S. Mikhailenko, A. Barbe, M.-R. de Backer-Barilly, et al., “Update of Line Parameters of Ozone in the 2590–2900 cm−1 Region,” Appl. Opt. 47, 4612–4618 (2008).CrossRefGoogle Scholar
  42. 42.
    S. N. Mikhailenko, A. K. A. Keppler, G. Mellau, et al., “Water Vapor Absorption Line Intensities in the 1900–6600 cm−1 Region,” J. Quant. Spectrosc. Radiat. Transfer 109, 2687–2696 (2008).CrossRefGoogle Scholar
  43. 43.
    A. V. Nikitin, S. N. Mikhailenko, I. Morino, et al., “Isotopic Substitution Shifts in Methane and Vibrational Band Assignment in the 5560–6200 cm−1 Region,” J. Quant. Spectrosc. Radiat. Transfer 110(12), 964–973 (2009).CrossRefGoogle Scholar
  44. 44.
    N. N. Lavrentieva, T. M. Petrova, A. M. Solodov, et al., “Measurements of N2-Broadening and -Shifting Parameters of the Water Vapor Spectral Lines in the Second Hexad Region,” J. Quant. Spectrosc. Radiat. Transfer 111(15), 2291–2297.Google Scholar
  45. 45.
    B. V. Perevalov, A. Campargue, B. Gao, et al., “New CW-CRDS Measurements and Global Modeling of 12C16O2 Absolute Line Intensities in the 1.6 μm Region,” J. Mol. Spectrosc. 252(2), 190–197 (2008).CrossRefGoogle Scholar
  46. 46.
    V. I. Perevalov, S. A. Tashkun, K. F. Song, et al., “Global Modeling of 16O12C17O and 16O12C18O Absolute Line Intensities in the 1.35 μm Region,” J. Mol. Spectrosc. 263(2), 183–185 (2010).CrossRefGoogle Scholar
  47. 47.
    I. V. Ptashnik and K. M. Smith, “Water Vapour Line Intensities and Self-Broadening Coefficients in the 5000–5600 cm−1 Spectral Region,” J. Quant. Spectrosc. Radiat. Transfer 111(10), 1317–1327 (2010).CrossRefGoogle Scholar
  48. 48.
    S. A. Tashkun, V. I. Perevalov, R. V. Kochanov, et al., “Global Fitting of 14N15N16O and 15N14N16O Vibrational-Rotational Line Positions Using the Effective Hamiltonian Approach,” J. Quant. Spectrosc. Radiat. Transfer 111(9), 1089–1105 (2010).CrossRefGoogle Scholar
  49. 49.
    S. A. Tashkun, T. I. Velichko, and S. N. Mikhailenko, “Critical Evaluation of Measured Rotation-Vibration Line Positions and an Experimental Dataset of Energy Levels of 12C16O in the X 1Σ+ State,” J. Quant. Spectrosc. Radiat. Transfer 111(9), 1106–1116 (2010).CrossRefGoogle Scholar
  50. 50.
    V. I. Perevalov, S. A. Tashkun, V. G. Tyuterev, et al., “Global Modeling of High-Resolution Spectra of Atmospheric Gas Molecules,” Atmos. Ocean. Opt. 20(5), 359–367 (2007).Google Scholar
  51. 51.
    S. D. Tvorogov, E. P. Gordov, and O. B. Rodimova, “Inter-Molecular Interaction and Molecular Spectroscopy: From Semi-Classical Representation of Quantum Theory to Line Wing Theory,” Atmos. Ocean. Opt. 20(9), 692–695 (2007).Google Scholar
  52. 52.
    B. V. Perevalov, S. Kassi, D. Romanini, et al., “Global Effective Hamiltonians of 16O13C17O and 16O13C18O Improved from CW-CRDS Observations in the 5900–7000 cm−1 Region,” J. Mol. Spectrosc. 241, 90–100 (2007).CrossRefGoogle Scholar
  53. 53.
    B. V. Perevalov, T. Deleporte, A. W. Liu, et al., “Global Modeling of 13C16O2 Absolute Line Intensities from CW-CRDS and FTS Measurements in the 1.6 and 2.0 μm Regions,” J. Quant. Spectrosc. Radiat. Transfer 109, 2009–2026 (2008).CrossRefGoogle Scholar
  54. 54.
    B. V. Perevalov, V. I. Perevalov, and A. Campargue, “A (Nearly) Complete Experimental Linelist for 13C16O2, 16O13C18O, 16O13C17O, 13C18O2 and 17O13C18O by High-Sensitivity CW-CRDS Spectroscopy between 5851 and 7045 cm−1,” J. Quant. Spectrosc. Radiat. Transfer 109, 2437–2462 (2008).CrossRefGoogle Scholar
  55. 55.
    H.-Y. Ni, K.-F. Song, V. I. Perevalov, et al., “Fourier-Transform Spectroscopy of 14N15N16O in the 3800–9000 cm−1 Region and Global Modeling of Its Absorption Spectrum,” J. Mol. Spectrosc. 248(1), 41–60 (2008).CrossRefGoogle Scholar
  56. 56.
    L. Wang, V. I. Perevalov, S. A. Tashkun, et al., “Fourier Transform Spectroscopy of 12C18O2 and 16O12C18O in the 3800–8500 cm−1 Region and the Global Modeling of the Absorption Spectrum of 12C18O2,” J. Mol. Spectrosc. 247(1), 64–75 (2008).CrossRefGoogle Scholar
  57. 57.
    A. V. Nikitin, F. Holka, Vl. G. Tyuterev, et al., “Vibrational Energy Levels of the PH3, PH2D, and PHD2 Molecules Calculated from High Order Potential Energy Surface,” J. Chem. Phys. 130(24), 244–312 (2009).CrossRefGoogle Scholar
  58. 58.
    A. D. Bykov, O. V. Naumenko, E. R. Polovtseva, et al., “Fourier Transform Absorption Spectrum of D2 18O in 7360–8440 cm−1 Region,” J. Quant. Spectrosc. Radiat. Transfer 111(15), 2197–2210 (2010).CrossRefGoogle Scholar
  59. 59.
    H.-Y. Ni, A.-W. Liu, K.-F. Song, et al., “High-Resolution Spectroscopy of the Triple-au]Substituted Isotopologue of Water HD18O: The First Triad,” Mol. Physics 106, 1793–1801 (2008).CrossRefGoogle Scholar
  60. 60.
    S. N. Mikhailenko, S. A. Tashkun, T. A. Putilova, et al., “Critical Evaluation of Rotation-Vibration Transitions and an Experimental Dataset of Energy Levels of HD18O,” J. Quant. Spectrosc. Radiat. Transfer 110(9–10), 597–608 (2009).CrossRefGoogle Scholar
  61. 61.
    S. N. Mikhailenko, S. A. Tashkun, L. Daumont, et al., “Line Positions and Energy Levels of the 18O Substitutions from the HDO/D2O Spectra between 5600 and 8800 cm−1,” J. Quant. Spectrosc. Radiat. Transfer 111(15), 2185–2196 (2010).CrossRefGoogle Scholar
  62. 62.
    O. V. Naumenko, S. Beguier, O. Leshchishina, et al., “ICLAS of HDO between 13020 and 14115 cm−1,” J. Quant. Spectrosc. Radiat. Transfer 111, 36–44 (2010).CrossRefGoogle Scholar
  63. 63.
    A. Liu, O. V. Naumenko, S. Kassi, et al., “High Sensitivity CW-CRDS of 18O Enriched Water Near 1.6 μm,” J. Quant. Spectrosc. Radiat. Transfer 110, 1781–1800 (2009).CrossRefGoogle Scholar
  64. 64.
    L. S. Rothman, I. E. Gordon, A. Barbe, et al., “The HITRAN 2008 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer 110(9–10), 533–572 (2009).CrossRefGoogle Scholar
  65. 65.
    J. Tennyson, P. F. Bernath, L. R. Brown, et al., “IUPAC Critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor. Part I. Energy Levels and Transition Wavenumbers for H2 17O and H2 18O,” J. Quant. Spectrosc. Radiat. Transfer 110, 573–596 (2009).CrossRefGoogle Scholar
  66. 66.
    J. Tennyson, P. F. Bernath, L. R. Brown, et al., “IUPAC Critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor. Part II. Energy Levels and Transition Wavenumbers for HDO,” J. Quant. Spectrosc. Radiat. Transfer 111, 2160–2184 (2010).CrossRefGoogle Scholar
  67. 67.
    B. A. Voronin, O. V. Naumenko, M. Carleer, et al., “HDO Absorption Spectrum Above 11500 cm−1: Assignment and Dynamics,” J. Mol. Spectrosc. 244, 87–101 (2007).CrossRefGoogle Scholar
  68. 68.
    B. A. Voronin, J. Tennyson, R. N. Tolchenov, et al., “A High Accuracy Computed Line List for the HDO Molecule,” Mon. Not. R. Astron. Soc. 402, 492–496 (2010).CrossRefGoogle Scholar
  69. 69.
    S. V. Shirin, R. I. Ovsyannikov, N. F. Zobov, et al., “Water Line Lists Close to Experimental Accuracy Using a Spectroscopically Determined Potential Energy Surfaces for H2 16O, H2 17O and H2 18O,” J. Chem. Phys. 128(22), 1–10 (2008).CrossRefGoogle Scholar
  70. 70.
    S. N. Yurchenko, B. A. Voronin, R. N. Tolchenov, et al., “Potential Energy Surface of HDO up to 25000 cm−1,” J. Chem. Phys. 128(4), 044312 (2008).CrossRefGoogle Scholar
  71. 71.
    A. D. Bykov, N. N. Lavrentieva, T. P. Mishina, et al., “Water Vapor Line Width and Shift Calculations with Accurate Vibration-Rotation Wave Functions,” J. Quant. Spectrosc. Radiat. Transfer 109, 1834–1844 (2008).CrossRefGoogle Scholar
  72. 72.
    A. D. Bykov, N. N. Lavrent’eva, T. M. Petrova, et al., “Shift of Centers of H2O Absorption Lines in the Region of 1.06 μm,” Opt. Spektrosk. 105(1), 25–31 (2008).CrossRefGoogle Scholar
  73. 73.
    A. D. Bykov, N. N. Lavrent’eva, T. P. Mishina, et al., “Influence of Interference between Water Vapor Lines on Atmospheric Transmission of Near IR-Radiation,” Opt. Spektrosk. 104(2), 165–171 (2008).CrossRefGoogle Scholar
  74. 74.
    J. T. Hodges, D. Lisak, N. Lavrentieva, et al., “Comparison between Theoretical Calculations and High61 Resolution Measurements of Pressure Broadening for Near-Infrared Water Spectra,” J. Mol. Spectrosc. 249, 86–94 (2008).CrossRefGoogle Scholar
  75. 75.
    N. Lavrentieva, A. Osipova, L. Sinitsa, et al., “Shifting Temperature Dependence of Nitrogen-Broadened Lines in the ν2 Band of H2O,” Mol. Phys. 106, 1261–1266 (2008).CrossRefGoogle Scholar
  76. 76.
    N. N. Lavrent’eva, T. P. Mishina, L. N. Sinitsa, et al., “Calculations of Self-Broadening and Self-Shifting of Spectral Lines of Water Vapor with the Use of Accurate Vibration-Rotation Wave Functions,” Atmos. Ocean. Opt. 21(12), 957–961 (2008).Google Scholar
  77. 77.
    N. Jacquinet-Husson, N. A. Scott, A. Chedin, et al., “The GEISA Spectroscopic Database: Current and Future Archive for Earth and Planetary Atmosphere Studies,” J. Quant. Spectrosc. Radiat. Transfer 109, 1043–1059 (2008).CrossRefGoogle Scholar
  78. 78.
    B. V. Perevalov, S. Kassi, V. I. Perevalov, et al., “High Sensitivity CW-CRDS Spectroscopy of 12C16O2, 16O12C17O and 16O12C18O between 5851 and 7045 cm−1: Line Positions Analysis and Critical Review of the Current Databases,” J. Mol. Spectrosc. 252(2), 143–159 (2008).CrossRefGoogle Scholar
  79. 79.
    A. V. Nikitin, O. M. Lyulin, S. N. Mikhailenko, et al., “GOSAT-2009 Methane Spectral Line List in the 5550–6236 cm−1 Region,” J. Quant. Spectrosc. Radiat. Transfer 111(15), 2211–2224 (2010).CrossRefGoogle Scholar
  80. 80.
    L. S. Rothman, I. E. Gordon, R. J. Barber, et al., “HITEMP, the High-Temperature Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer 111(15), 2139–2150 (2010).CrossRefGoogle Scholar
  81. 81.
    O. Yu. Nikiforova, V. A. Kapitanov, and Yu. N. Ponomarev, “Influence of Ethylene Spectral Lines on Methane Concentration Measurements with a Diode Laser Methane Sensor in the 1.65 μm Region,” Appl. Phys. B 90(2), 263–268 (2008).CrossRefGoogle Scholar
  82. 82.
    V. A. Kapitanov, I. S. Tyryshkin, N. P. Krivolutskii, et al., “Spatial Distribution of Methane over Lake Baikal Surface,” Spectrochim. Acta, Part A 66(4–5), 788–795 (2007).Google Scholar
  83. 83.
    V. A. Kapitanov, Yu. N. Ponomarev, I. S. Tyryshkin, et al., “Two-Channel Opto-Acoustic Diode Laser Spectrometer and Fine Structure of Methane Absorption Spectra in 6070–6180 cm−1 Region,” Spectrochim. Acta, Part A 66(4–5), 811–818 (2007).Google Scholar
  84. 84.
    V. A. Kapitanov and Yu. N. Ponomarev, “High Resolution Ethylene Absorption Spectrum between 6035 cm−1 and 6210 cm−1,” Appl. Phys. B 90(2), 235–241 (2008).CrossRefGoogle Scholar
  85. 85.
    M. A. Gonzalez, BoudonV. Lorono, M. Loete, et al., “High-Resolution Spectroscopy and Preliminary Global Analysis of C-H Stretching Vibrations of C2H4 in the 3000 and 6000 cm−1 Regions,” J. Quant. Spectrosc. Radiat. Transfer 111(15), 2265–2278 (2010).CrossRefGoogle Scholar
  86. 86.
    O. N. Ulenikov and G. A. Onopenko, et al., “High Resolution Study of the ν5 + ν12 Band of C2H4,” Mol. Phys. 108(5), 637–647 (2010).CrossRefGoogle Scholar
  87. 87.
    V. A. Kapitanov, A. M. Solodov, T. M. Petrova, et al., “Fourier Transform and Photo-Acoustic Absorption Spectra of Ethylene within 6035–6210 cm−1. Comparative Measurements,” Int. J. Spectrosc. 203672 (2010). doi 10.1155/2010/203672Google Scholar
  88. 88.
    G. M. Abakumova and E. V. Gorbarenko, E. I. Nezval’, et al., “Fifty Years of Actinometrical Measurements in Moscow,” Int. J. Remote Sens. 29(9), 2629–2665 (2008).CrossRefGoogle Scholar
  89. 89.
    G. M. Abakumova and E. V. Gorbarenko, Atmospheric Transparency in Moscow over 50 Years and Its Changes on the Territory of Russia (LKI, Moscow, 2008) [in Russian].Google Scholar
  90. 90.
    H. Ohvril, H. Teral, L. Neiman, et al., “Variability of Atmospheric Column Transparency in the Baltic Region, 1906–2006,” J. Geophys. Res. 114, D12 (2009).CrossRefGoogle Scholar
  91. 91.
    S. M. Sakerin, E. V. Gorbarenko, and D. M. Kabanov, Peculiarities of Many-Yea Variations of Atmospheric Aerosol Optical Depth and Estimates of Influence of Different Factors,” Atmos. Ocean. Opt. 21(7), 540–545 (2008).Google Scholar
  92. 92.
    N. E. Chubarova, “UV Variability in Moscow according to Long-Term UV Measurements and Reconstruction Model,” Atm. Chem. Phys., No. 8, 3025–3031 (2008).Google Scholar
  93. 93.
    N. Y. Chubarova, N. G. Prilepsky, A. N. Rublev, et al., “A Mega-Fire Event in Central Russia: Fire Weather, Radiative, and Optical Properties of the Atmosphere, and Consequences for Subboreal Forest Plants,” in Developments in Environmental Science, Ed. by A. Bytnerowicz, M. Arbaugh, A. Riebau, et al. (Elsevier, Amsterdam, 2009), Vol. 8, pp. 249–267.Google Scholar
  94. 94.
    N. Y. Chubarova, “Seasonal Distribution of Aerosol Properties over Europe and Their Impact on UV Irradiance,” Atmos. Meas. Tech., No. 2, 593–608, (2009). http://www.atmos-meas-tech.net/2/593/2009/ Google Scholar
  95. 95.
    N. Y. Chubarova, M. A. Sviridenkov, A. Smirnov, et al., “Assessments of Urban Aerosol Pollution in Moscow and Its Radiative Effects,” Atmos. Meas. Tech. Discuss., No. 3, 5469–5498 (2010). http://www.atmos-meas-tech-discuss.net/3/5469/2010/doi:10.5194/amtd-3-5469-2010 Google Scholar
  96. 96.
    T. K. Sklyadneva and B. D. Belan, “Radiative Regime Near Tomsk in 1995–2005,” Atmos. Ocean. Opt. 20(1), 54–59 (2007).Google Scholar
  97. 97.
    B. D. Belan, G. A. Ivlev, and T. K. Sklyadneva, “Variations of UV-B Radiation in Tomsk over 2003–2007,” Atmos. Ocean. Opt. 21(7), 535–539 (2008).Google Scholar
  98. 98.
    T. K. Sklyadneva and T. B. Zhuravleva, “Occurrence of Main Cloudiness Types over Tomsk: Data of Ground-Based Observations in 1993–2004,” Atmos. Ocean. Opt. 21(1), 55–58 (2008).Google Scholar
  99. 99.
    M. V. Panchenko, M. A. Sviridenkov, A. S. Emilenko, et al., “Comparison of Aerosol Optical and Micro-physical Characteristics in a Local Volume and on a Long Path,” Atmos. Ocean. Opt. 20(6), 451–456 (2007).Google Scholar
  100. 100.
    S. M. Sakerin and D. M. Kabanov, “Correlations between the Parameters of Angström Formula and Aerosol Optical Thickness of the Atmosphere in the Wavelength Range from 1 to 4 μm,” Atmos. Ocean. Opt. 20(3), 200–206, 2007.Google Scholar
  101. 101.
    S. M. Sakerin and D. M. Kabanov, “Spectral Dependence of the Atmospheric Aerosol Optical Depth in the Wavelength Range from 0.37 to 4 μm,” Atmos. Ocean. Opt. 20(2), 141–149 (2007).Google Scholar
  102. 102.
    V. V. Zuev, O. E. Bazhenov, V. D. Burlakov, et al., “Long-Term Trends, Seasonal and Anomalous Short-Term Variations of Background Stratospheric Aerosol,” Atmos. Ocean. Opt. 21(1), 33–37 (2008).Google Scholar
  103. 103.
    S. M. Sakerin, S. A. Beresnev, S. Yu. Gorda, et al., “Characteristics of the Annual Behavior of the Spectral Aerosol Optical Depth of the Atmosphere under Conditions of Siberia,” Atmos. Ocean. Opt. 22(4), 446–456 (2009).CrossRefGoogle Scholar
  104. 104.
    S. M. Sakerin, S. A. Beresnev, S. Yu. Gorda, et al., “Characteristics of the Annual Behavior of the Spectral Aerosol Optical Depth of the Atmosphere under Conditions of Siberia,” Atmos. Ocean. Opt. 22(4), 446–456 (2009).CrossRefGoogle Scholar
  105. 105.
    S. M. Sakerin, A. N. Pavlov, O. A. Bukin, et al., “Results of an Integrated Aerosol Experiment in the Continent-Ocean Transition Zone (Primorye and the Sea of Japan); Part 1: Variations of Atmospheric Aerosol Optical Depth and Vertical Profiles,” Atmos. Ocean. Opt. 24(1), 64–73 (2011).CrossRefGoogle Scholar
  106. 106.
    S. V. Afonin, M. V. Engel’, A. Yu. Mayor, et al., “Results of an Integrated Aerosol Experiment in the Continentocean Transition Zone (Primorye and the Sea of Japan). Part 2. Analysis of Spatiotemporal Variations of Aerosol Characteristics according to Satellite Data and Lidar Measurements,” Atmos. Ocean. Opt. 24(2), 198–206 (2011).CrossRefGoogle Scholar
  107. 107.
    A. Smirnov, B. N. Holben, I. Slutsker, et al., “Maritime Aerosol Network as a Component of Aerosol Robotic Network,” J. Geophys. Res. 114, D06204 (2009).CrossRefGoogle Scholar
  108. 108.
    A. Smirnov, B. N. Holben, D. M. Giles, et al., “Maritime Aerosol Network as a Component of AERO-NET-First Results and Comparison with Global Aerosol Models and Satellite Retrievals,” Atmos. Meas. Tech. Discuss., No. 4, 1–32 (2011). http://www.atmos-meas-tech-discuss.net/4/1/2011/. doi 10.5194/amtd-4-1-20Google Scholar
  109. 109.
    A. N. Rublev, I. A. Gorchakova, and T. A. Udalova, “The Effect that Coarse Particles Have on Estimates of Both Optical and Radiation Characteristics of Dust Aerosol,” Izv., Atmos. Ocean. Phys. 47(2), 190–200 (2011).CrossRefGoogle Scholar
  110. 110.
    A. A. Isakov, A. S. Elokhov, and E. A. Lezina, “Synchronous Variations of the Mass Concentration of Near-Ground Aerosol, Nitrogen Oxides, and Ozone in the Moscow Region,” Atmos. Ocean. Opt. 22(4), 428–434 (2009).CrossRefGoogle Scholar
  111. 111.
    A. A. Isakov and A. V. Tikhonov, “On the Comparison of the Average Arrival Directions of Air Masses in the Moscow Region Versus the Average Hanel Parameters and Average Particle Refractive Indices,” Atmos. Ocean. Opt. 23(3), 169–173 (2010).CrossRefGoogle Scholar
  112. 112.
    G. I. Gorchakov, B. A. Anoshin, and E. G. Semoutnikova, “Statistical Analysis of Mass Concentration Variations of the Coarse Aerosol in Moscow,” Atmos. Ocean. Opt. 20(6), 461–464 (2007).Google Scholar
  113. 113.
    A. S. Emilenko and V. M. Kopeikin, “Comparison of Synchronous Measurements of Soot and Submicron Aerosol Concentrations in Regions with Different Anthropogenic Loadings,” Atmos. Ocean. Opt. 22(4), 421–427 (2009).CrossRefGoogle Scholar
  114. 114.
    V. F. Radionov, E. N. Rusina, and E. E. Sibir, “Specific Features of Long-Term Variability of Total Solar Radiation and Characteristics of Atmospheric Transparency in Polar Areas,” Probl. Arkt. Antarkt., No. 76, 131–136 (2007).Google Scholar
  115. 115.
    V. F. Radionov, E. N. Rusina, and E. E. Sibir, “Radiation Regime and Long-Term Variability of Total Solar Radiation at Barents Sea Stations,” Trudy AANII 450, 81–90 (2009).Google Scholar
  116. 116.
    C. Tomasi, V. Vitale, A. Lupi, et al., “Aerosols in Polar Regions: A Historical Overview Based on Optical Depth and in situ Observations,” J. Geophys. Res. D 112, d16 205 (2007). doi 10.1029/2007JD008432CrossRefGoogle Scholar
  117. 117.
    S. M. Sakerin, D. M. Kabanov, V. F. Radionov, et al., “About Investigation Results on the Atmosphere Aerosol Optical Depth in Circumnavigation around Antarctica (the 53d RAE),” Atmos. Ocean. Opt. 21(12), 900–904, (2008).Google Scholar
  118. 118.
    S. M. Sakerin, D. M. Kabanov, V. S. Kozlov, et al., “Results of Aerosol Characteristics Investigations during the 52th RAE,” Probl. Arkt. Antarkt., No. 77, 65–75 (2007).Google Scholar
  119. 119.
    T. B. Zhuravleva, D. M. Kabanov, S. M. Sakerin, et al., “Simulation of Aerosol Direct Radiative Forcing under Typical Summer Conditions of Siberia. Part 1. Method of Calculation and Choice of Input Parameters,” Atmos. Ocean. Opt. 22(1), 63–73 (2009).CrossRefGoogle Scholar
  120. 120.
    T. B. Zhuravleva and S. M. Sakerin, “Simulation of Aerosol Direct Radiative Forcing under Typical Summer Conditions of Siberia. Part 2. Variability Range and Sensitivity to the Input Parameters,” Atmos. Ocean. Opt. 22(1), 74–83 (2009).CrossRefGoogle Scholar
  121. 121.
    T. B. Zhuravleva, D. M. Kabanov, and S. M. Sakerin, “On Daytime Variations of Atmospheric Aerosol Optical Depth and Aerosol Radiative Forcing,” Atmos. Ocean. Opt. 23(6), 528–537 (2010).CrossRefGoogle Scholar
  122. 122.
    S. M. Sakerin, V. V. Veretennikov, T. B. Zhuravleva, et al., “Comparative Analysis of Radiative Characteristics Aerosol in Fire Smokes and Cloudy Conditions,” Opt. Atmos. Okeana 23(6), 451–461 (2010).Google Scholar
  123. 123.
    V. V. Zuev, O. E. Bazhenov, V. D. Burlakov, et al., “On the Effect of Volcanic Aerosol on Variations of Stratospheric Ozone and NO2 according to Measurements at the Siberian Lidar Station,” Atmos. Ocean. Opt. 21(11), 825–831 (2008).Google Scholar
  124. 124.
    I. L. Karol’, V. A. Frol’kis, and A. A. Kiselev, “Radiative and Thermal Regime of the Atmosphere and the Climate System: External Forcing Indices and Their Evaluation,” Trudy GGO, No. 560, 33–50 (2009).Google Scholar
  125. 125.
    I. L. Karol, V. A. Frolkis, and A. A. Kiselev, “Radiative and Thermal Regime of the Atmosphere and the Climate System: External Forcing Indices (Metrics) and Their Evaluation,” in IPCC Expert Meeting on the Science of Alternative Metrics, Ed. by G.-K. Plattner, T. Stocker, P. Midglaey, et al. (Univ. of Bern, Bern, 2009), pp. 37–38.Google Scholar
  126. 126.
    V. A. Frol’kis and I. L. Karol’, “Simulation of the Effect of Stratospheric Aerosol Dimming Parameters on the Efficiency of Offsetting Global Greenhouse Climate Warming,” Atmos. Ocean. Opt. 24(1), 74–87 (2011).CrossRefGoogle Scholar
  127. 127.
    V. P. Meleshko, V. M. Kattsov, and I. L. Karol’, “Is Aerosol Scattering in the Stratosphere a Safety Technology Preventing Global Warming?,” Russ. Meteorol. Hydrol. 35(7), 433–440 (2010).CrossRefGoogle Scholar
  128. 128.
    V. I. Zakharov, K. G. Gribanov, and S. A. Beresnev, “Role of Gas and Aerosol Components of the Atmosphere in the Model of Greenhouse Explosion,” Atmos. Ocean. Opt. 22(2), 162–172 (2009).CrossRefGoogle Scholar
  129. 129.
    V. I. Zakharov, “Regarding Greenhouse Explosion,” in Global Climatology and Ecodynamics-Anthropogenic Changes to Planet Earth, Ed. by A. Cracknell, V. Krapivin, C. Varotsos (Springer/PRAXIS, Chichester, 2008), Ch. 6, pp. 107–132.CrossRefGoogle Scholar
  130. 130.
    V. I. Zakharov, R. Imasu, K. G. Gribanov, et al., “Free Energy Balance at the Upper Boundary of the Atmosphere,” Atmos. Ocean. Opt. 21(3), 211–218 (2008).Google Scholar
  131. 131.
    E. N. Kadygrov, A. V. Koldaev, E. A. Miller, et al., “Study of Urban Heat Island Inhomogeneity in Nizhni Novgorod on the basis of a Mobile Atmospheric Temperature Profiler,” Russ. Meteorol. Hydrol. 32(2), 110–118 (2007).CrossRefGoogle Scholar
  132. 132.
    E. N. Kadygrov, “Microwave Radiometry of Atmospheric Boundary Layer-Method, Instrumentation, Measurement Results,” Opt. Atmos. Okeana 22(7), 697–704 (2009).Google Scholar
  133. 133.
    E. A. Miller, E. A. Vorob’eva, and E. N. Kadygrov, “Analysis of Seasonal and Annual Peculiarities of the Temperature Stratification of an Urban Heat Island,” Atmos. Ocean. Opt. 22(4), 435–440 (2009).CrossRefGoogle Scholar
  134. 134.
    V. A. Gladkikh, A. E. Makienko, E. A. Miller, et al., “Study of the Atmospheric Boundary Layer Parameters under Urban Conditions with Local and Remote Diagnostics Facilities. Part 1. Interlevel Wind Speed Correlations,” Atmos. Ocean. Opt. 24(3), 271–279 (2011); “Part. 2. Air Temperature and Heat Flux,” Atmos. Ocean. Opt. 24 (3), 280–287 (2011).CrossRefGoogle Scholar
  135. 135.
    E. A. Vorob’eva, A. N. Shaposhnikov, V. V. Folomeev, et al., “Measurement Results of Thermal Stratification of Atmospheric Boundary Layer in Canyons and Troughs of the Guam Ridge,” Opt. Atmos. Okeana 23(6), 505–509 (2010).Google Scholar
  136. 136.
    G. I. Gorchakov, E. N. Kadygrov, A. A. Isakov, et al., “Influence of a Solar Eclipse on Thermal Stratification and the Turbulence Regime,” Dokl. Earth Sci. 417(8), 1243–1247 (2007).CrossRefGoogle Scholar
  137. 137.
    G. I. Gorchakov, E. N. Kadygrov, Z. V. Kortunova, et al., “Eclipse Effects in the Atmospheric Boundary Layer,” Izv., Atmos. Ocean. Phys. 44(1), 100–106 (2008).Google Scholar
  138. 138.
    G. I. Gorchakov, A. K. Petrov, A. A. Isakov, et al., “The Influence of Solar Eclipse on the Processes in the Atmospheric Boundary Layer,” Atmos. Ocean. Opt. 23(6), 433–440 (2010).CrossRefGoogle Scholar
  139. 139.
    S. V. Solomonov, A. N. Ignat’ev, E. P. Kropotkina, et al., “Spectral Instruments for Monitoring of Atmospheric Ozone at Millimeter Waves,” Prib. Tekh. Eksp., No. 2, 138–144 (2009).Google Scholar
  140. 140.
    A. M. Zvyagintsev, I. B. Belikov, N. F. Elanskii, et al., “Statistical Modeling of Daily Maximum Surface Ozone Concentrations,” Atmos. Ocean. Opt. 23(4), 284–292 (2010).CrossRefGoogle Scholar
  141. 141.
    E. A. Titova, I. L. Karol’, A. M. Shalamyanskii, et al., “Statistical Analysis and Comparison of External Factor Effects on the Total Ozone Field over the Russian Territory in 1973–2007,” Russ. Meteorol. Hydrol. 34(7), 442–453 (2009).CrossRefGoogle Scholar
  142. 142.
    B. D. Belan, “Tropospheric Ozone. 3. Mechanism and Factors Determining the Ozone Content in Troposphere,” Atmos. Ocean. Opt. 21(7), 520–534 (2008).Google Scholar
  143. 143.
    B. D. Belan, “Tropospheric Ozone. 6. Ozone Cycle Components,” Opt. Atmos. Okeana 22(4), 358–380 (2009).Google Scholar
  144. 144.
    B. D. Belan, “Tropospheric Ozone. 7. Ozone Sinks in the Troposphere,” Opt. Atmos. Okeana 23(2), 108–126 (2010).Google Scholar
  145. 145.
    B. D. Belan, G. N. Tolmachev, and A. V. Fofonov, “Ozone Vertical Distribution in the Troposphere over South Regions of Western Siberia,” Atmos. Ocean. Opt. 24(2), 181–187 (2011).CrossRefGoogle Scholar
  146. 146.
    M. I. Beloglazov, V. M. Demkin, A. A. Krasil’nikov, et al., “Microwave Measurements of the Ozone Content in Winter Arctic Stratosphere,” Geomagn. Aeron. 50(2), 256–262 (2010).CrossRefGoogle Scholar
  147. 147.
    Yu. Yu. Kulikov, A. A. Krasil’nikov, V. M. Demkin, et al., “Variations in the Concentration of Mesospheric Ozone duringthe Total Solar Eclipse of March 29, 2006, from Microwave Radiometric Data,” Izv., Atmos. Ocean. Phys. 44(4), 486–490 (2008).CrossRefGoogle Scholar
  148. 148.
    E. N. Rusina and E. L. Genikhovich, “A Method for Analyzing Data on Total Ozone Content in Observations on Mobile Platforms,” Trudy GGO, No. 562, 61–75 (2010).Google Scholar
  149. 149.
    M. V. Makarova, A. V. Poberovskii, K. N. Visheratin, et al., “Time Variability of the Total Methane Content in the Atmosphere over the Vicinity of St. Petersburg,” Izv., Atmos. Ocean. Phys. 45(6), 723–730 (2009).CrossRefGoogle Scholar
  150. 150.
    M. V. Makarova, V. S. Kostsov, and A. V. Poberovskii, “Study of the Factors Determining Anomalous Variability of Carbon Dioxide Total Column Amount over St. Petersburg,” Izv., Atmos. Ocean. Phys. 43(4), 497–504 (2007).CrossRefGoogle Scholar
  151. 151.
    A. V. Poberovskii, “High-Resolution Ground Measurements of the IR Spectra of Solar Radiation,” Atmos. Ocean. Opt. 23(2), 161–163 (2010).CrossRefGoogle Scholar
  152. 152.
    A. V. Poberovskii, A. V. Polyakov, and Yu. M. Timofeev, “Measurements of the Hydrogen Fluoride Total Column Amount in the Atmosphere over the Vicinity of St. Petersburg,” Izv., Atmos. Ocean. Phys. 46(2), 261–263 (2010).CrossRefGoogle Scholar
  153. 153.
    A. V. Poberovskii, M. V. Makarova, A. V. Rakitin, et al., “Variability of the Total Column Amounts of Climate Influencing Gases Obtained from Ground-Based High Resolution Spectroscope Measurements,” Dokl. Akad. Nauk 432(1), 656–659 (2010).Google Scholar
  154. 154.
    Ya. A. Virolainen and Yu. M. Timofeev, “Determination of Elements of the Vertical Structure of Ozone Content from Ground-Based Measurements of Solar Radiation with High Spectral Resolution,” Issled. Zemli Kosmosa, No. 3, 3–10 (2008).Google Scholar
  155. 155.
    Ya. A. Virolainen and Yu. M. Timofeev, “A Combined Method for Determining the Vertical Profiles of Ozone Content to Validate Satellite Measurements,” Issled. Zemli Kosmosa, No. 4, 61–66 (2010).Google Scholar
  156. 156.
    Ya. A. Virolainen, Yu. M. Timofeev, D. V. Ionov, et al., “Ground-Based Measurements of Total Ozone Content by the Infrared Method,” Izv., Atmos. Ocean. Phys. 47(4), 480–490 (2011).CrossRefGoogle Scholar
  157. 157.
    A. V. Poberovskii, A. V. Shashkin, D. V. Ionov, et al., “NO2 Content Variations Near St. Petersburg as Inferred from Ground-Based and Satellite Measurements of Scattered Solar Radiation,” Izv., Atmos. Ocean. Phys. 43(4), 505–513 (2007).CrossRefGoogle Scholar
  158. 158.
    M. V. Makarova, A. V. Poberovskii, and S. I. Osipov, “Time Variations of the Total CO Content in the Atmosphere Near St. Petersburg,” Izv., Atmos. Ocean. Phys. 47(6), 739–746 (2011).CrossRefGoogle Scholar
  159. 159.
    M. V. Makarova, A. V. Rakitin, D. V. Ionov, et al., “Analysis of Variability of the CO, NO2, and O3 Contents in the Troposphere Near St. Petersburg,” Izv., Atmos. Ocean. Phys. 47(4), 468–479 (2011).CrossRefGoogle Scholar
  160. 160.
    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, et al., “Spatial and Temporal Variability of CO2 and CH4 Concentrations in the Surface Atmospheric Layer over West Siberia,” Atmos. Ocean. Opt. 22(1), 84–93 (2009).CrossRefGoogle Scholar
  161. 161.
    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, et al., “Vertical Distribution of Greenhouse Gases above Western Siberia by the Long-Term Measurement Data,” Atmos. Ocean. Opt. 22(3), 316–324 (2009).CrossRefGoogle Scholar
  162. 162.
    M. V. Panchenko, V. M. Domysheva, D. A. Pestunov, et al., “Experimental Study of CO2 Gas Exchange in the System “Atmosphere-Water Surface” of Lake Baikal (Statement of Experiment),” Atmos. Ocean. Opt. 20(5), 408–417 (2007).Google Scholar
  163. 163.
    M. V. Sakirko, M. V. Panchenko, V. M. Domysheva, et al., “Diurnal Rhythms of Carbon Dioxide Concentration in the Sea-Level Air Layer and in the Surface Water of Lake Baikal in Different Hydrological Seasons,” Russ. Meteorol. Hydrol. 33(2), 112–116 (2008).CrossRefGoogle Scholar
  164. 164.
    M. V. Sakirko, V. M. Domysheva, O. I. Belykh, et al., “Estimation of the Spatial Variability of Carbonic Acid Stream Direction in Different Hydrological Seasons at Lake Baikal,” Atmos. Ocean. Opt. 22(4), 478–482 (2009).CrossRefGoogle Scholar
  165. 165.
    V. M. Domysheva, M. V. Sakirko, D. A. Pestunov, et al., “Seasonal Behavior of the CO2 Gas Exchange Process in the “Atmosphere-Water” System of the Littoral Zone of Southern Baikal. 1. Hydrological Spring,” Atmos. Ocean. Opt. 24(3), 253–260 (2010).CrossRefGoogle Scholar
  166. 166.
    V. M. Domysheva, M. V. Sakirko, D. A. Pestunov, et al., “Experimental Assessment of the Carbon Dioxide Flow in the Atmosphere-Water System of the Littoral and Pelagic Zones of Lake Baikal during Hydrological Summer,” Dokl. Earth Sci. 431(2), 541–545 (2010).CrossRefGoogle Scholar
  167. 167.
    F. V. Kashin, V. F. Radionov, and E. I. Grechko, “Variations in the Total Column Amounts of Carbon Monoxide and Methane in the Antarctic Atmosphere,” Izv., Atmos. Ocean. Phys. 43(4), 490–496 (2007).CrossRefGoogle Scholar
  168. 168.
    V. F. Radionov, E. N. Rusina, E. E. Sibir, et al., “Specific Features of Total Ozone Content in Northern and Southern Polar Areas,” Probl. Arkt. Antarkt., No. 75, 64–72 (2007).Google Scholar
  169. 169.
    F. V. Kashin, V. N. Aref’ev, N. E. Kamenogradskii, et al., “Carbon Dioxide Content in the Atmospheric Thickness over Central Eurasia (Issyk Kul Monitoring Station),” Izv., Atmos. Ocean. Phys. 43(4), 480–489 (2007).CrossRefGoogle Scholar
  170. 170.
    F. V. Kashin, V. N. Aref’ev, V. K. Semenov, et al., “Structure of Time Variations in Carbon Dioxide in the Atmospheric Thickness over Central Eurasia (Issyk Kul Monitoring Station),” Izv., Atmos. Ocean. Phys. 44(1), 90–99 (2008).Google Scholar
  171. 171.
    V. N. Aref’ev, F. V. Kashin, A. V. Krasnosel’tsev, et al., “Structure of Time Variations in the Atmospheric Transparency in Central Eurasia (Issyk Kul Monitoring Station),” Izv., Atmos. Ocean. Phys. 44(5), 615–620 (2008).CrossRefGoogle Scholar
  172. 172.
    V. N. Aref’ev, F. V. Kashin, V. K. Semenov, et al., “Variations in Nitrogen Dioxide in the Atmosphere over Central Eurasia (Issyk Kul Monitoring Station),” Izv., Atmos. Ocean. Phys. 45(5), 575–582 (2009).CrossRefGoogle Scholar
  173. 173.
    F. V. Kashin, R. M. Akimenko, V. N. Aref’ev, et al., “Carbon Oxide in the Surface Air (Obninsk Monitoring Station),” Izv., Atmos. Ocean. Phys. 46(1), 45–55 (2010).CrossRefGoogle Scholar
  174. 174.
    A. N. Rublev, A. N. Trotsenko, T. A. Udalova, et al., “Determination of NO2 in the Surface Layer of the Atmosphere,” RRC Kurchatov Institute, Preprint IAE-6506/16 (2008).Google Scholar
  175. 175.
    V. I. Zakharov, M. S. Blagodareva, and K. G. Gribanov, “The Method of Remote Sensing of 13CO2/12CO2 Ratio in the Atmosphere using High Resolution Transmittance IR Spectra,” Atmos. Ocean. Opt. 21(5), 342–344 (2008).Google Scholar
  176. 176.
    K. G. Gribanov, V. I. Zakharov, S. A. Beresnev, et al., “Sensing HDO/H2O in the Ural’s Atmosphere Using Ground-Based Measurements of IR Solar Radiation with a High Spectral Resolution,” Atmos. Ocean. Opt. 24(4), 369–372 (2011).CrossRefGoogle Scholar
  177. 177.
    A. Yu. Toptygin, K. G. Gribanov, V. I. Zakharov, et al., “Determination of the Vertical Profile of HDO/H2O from High-Resolution Atmospheric Transmission Spectra,” Atmos. Ocean. Opt. 24(4), 369–372 (2007).Google Scholar
  178. 178.
    I. M. Levin and O. V. Kopelevich, “Correlations between the Inherent Hydrooptical Characteristics in the Spectral Range Close to 550 nm,” Okeanologiya 47(3), 344–348 (2007).Google Scholar
  179. 179.
    I. M. Levin, “Advanced Lines of Progress for Optical Remote Methods of Ocean Study,” in Fundamental and Applied Hydrophysics, Ed. by A. A. Rodionov (Nauka, St. Petersburg, 2008), No. 1(6), pp. 14–47 [in Russian].Google Scholar
  180. 180.
    I. M. Levin, L. S. Dolin, O. N. Frantsuzov, et al., “Depth Profiles of Hydrophysical Parameters in the Barents Sea as applied to the Problem of Lidar Sounding,” in Fundamental and Applied Hydrophysics, Ed. by A. A. Rodionov (Nauka, St. Petersburg, 2008), No. 4(6), pp. 16–24 [in Russian].Google Scholar
  181. 181.
    I. S. Dolina, M. A. Rodionov, and I. M. Levin, “Reconstruction of the Characteristics of Hydrophysical Fields in the Sea from Hydro-Optical Measurement Data,” Morskoi Vestn., No. 4, 62–64 (2010).Google Scholar
  182. 182.
    V. V. Savchenko, V. Yu. Osadchii, and I. M. Levin, “Correcting Underwater Images Distorted by Surface Waves,” Okeanologiya 48(6), 780–783 (2008).Google Scholar
  183. 183.
    I. Levin, V. Savchenko, and V. Osadchy, “Correction of an Image Distorted by a Wavy Water Surface: Laboratory Experiment,” Appl. Opt. 47(35), 6650–6655 (2008).CrossRefGoogle Scholar
  184. 184.
    I. M. Levin, L. S. Dolin, and T. M. Radomysl’skaya, “Visibility Range of Large Submarine Objects in Visual Observation from the Air through Wavy Sea Surface,” in Fundamental and Applied Hydrophysics, Ed. by A. A. Rodionov (Nauka, St. Petersburg, 2008), No. 1(3), pp. 4–15 [in Russian].Google Scholar
  185. 185.
    I. V. Aleshin, V. K. Goncharov, I. M. Levin, et al., “Modern Remote Methods for Studying the Ecological State of the Marine Environment under Ice Conditions,” Morskoi Vestnik, No. 2 (26), 69–74 (2008).Google Scholar
  186. 186.
    S. M. Sakerin, D. M. Kabanov, A. P. Rostov, et al., “Mobile Solar Photometer,” Prib. Tekh. Eksp., No. 2, 181–182 (2009).Google Scholar
  187. 187.
    S. M. Sakerin, D. M. Kabanov, A. P. Rostov, et al., “Solar Photometer SP-9 for Aerosol Monitoring,” Prib. Tekh. Eksp., No. 5, 165–166 (2010).Google Scholar
  188. 188.
    D. M. Kabanov, V. V. Veretennikov, Yu. V. Voronina, et al., “Information System for Network Solar Photometers,” Atmos. Ocean. Opt. 22(1), 121–127 (2009).CrossRefGoogle Scholar
  189. 189.
    V. V. Zuev, V. D. Burlakov, S. I. Dolgii, and A. V. Nevzorov, “Differential Absorption Lidar for Ozone Sensing in the Upper Troposphere and Lower Stratosphere,” Atmos. Ocean. Opt. 21(10), 765–768 (2008).Google Scholar
  190. 190.
    A. A. Solomatnikova, “Calculation of Total Ozone Content with Automated Measurements by Light from Zenith of Clear and Cloudy Sky,” Trudy GGO, No. 560, 255–267 (2009).Google Scholar
  191. 191.
    A. A. Eliseev and V. I. Privalov, “Characteristics of Radiative Heat Transfer in the Atmospheric Surface Layer from the Results of Direct Measurements,” Izv., Atmos. Ocean. Phys. 43(5), 586–591 (2007).CrossRefGoogle Scholar
  192. 192.
    A. A. Eliseev, D. V. Rumyantsev, and V. A. Frol’kis, “Substantiation of the Possibility of Direct Measurements of Radiative Heat Influx in the Atmosphere,” Atmos. Ocean. Opt. 22(3), 359–364 (2009).CrossRefGoogle Scholar
  193. 193.
    A. N. Ignat’ev, K. P. Gaikovich, E. P. Kropotkina, et al., “Simulation of Calculations Chlorine Oxide Content in the Atmosphere by Ground-Based Observation Data at Millimeter Waves,” Radiotekh. Elektron. 52(5), 538–544 (2007).Google Scholar
  194. 194.
    A. A. Krasil’nikov, Yu. Yu. Kulikov, V. G. Ryskin, et al., “New Small-Size Microwave Spectroradiometer-Ozonometer,” Prib. Tekh. Eksp., No. 1, 127–133 (2011).Google Scholar
  195. 195.
    A. V. Polyakov, Yu. M. Timofeev, and A. B. Uspenskii, “Temperature-Moisture Sounding of the Atmosphere by data of IKFS-2, a Satellite IR Sensing Device with High Spectral Resolution,” Issled. Zemli Kosmosa, No. 5, 3–10 (2009).Google Scholar
  196. 196.
    Ya. A. Virolainen, Yu. M. Timofeev, A. V. Polyakov, et al., “Optimal Parameterization of the Spectra of Outgoing Thermal Radiation with the Data of the IKFS-2 Spaceborne IR Sensing Device Taken as an Example,” Atmos. Ocean. Opt. 23(3), 215–221 (2010).CrossRefGoogle Scholar
  197. 197.
    A. V. Polyakov, Yu. M. Timofeev, and A. B. Uspenskii, “Possibilities of Determination of the Content of Ozone and Other Trace Gases by Data of IKFS-2, a Satellite IR Sensing Device with High Spectral Resolution,” Issled. Zemli Kosmosa, No. 3, 3–11 (2010).Google Scholar
  198. 198.
    A. V. Polyakov, Yu. M. Timofeyev, and A. B. Uspensky, “Possibilities for Determining Temperature and Emissivity of the Land Surface from Data of Satellite IR Sounders with High Spectral Resolution (IRFS-2),” Izv., Atmos. Ocean. Phys. 47(9), 1092–1096 (2011).CrossRefGoogle Scholar
  199. 199.
    A. V. Polyakov and Yu. M. Timofeev, “The Accuracy of the Calculation of Total Ozone ContenUsing the SEVIRI Instrument on the Geostationary Satellite Meteosat-8,” Issled. Zemli Kosmosa, No. 2, 3–9 (2007).Google Scholar
  200. 200.
    A. V. Polyakov and Yu. M. Timofeev, “Determining the Total Ozone from Geostationary Earth Satellites,” Izv., Atmos. Ocean. Phys. 44(6), 745–752 (2008).CrossRefGoogle Scholar
  201. 201.
    S. G. Semakin, A. V. Polyakov, and Yu. M. Timofeev, “Comparison of Measured and Calculated Transmission Functions in the A-Band of Oxygen at 0.76 mcm,” Issled. Zemli Kosmosa, No. 1, 37–43 (2008).Google Scholar
  202. 202.
    S. G. Semakin, Yu. M. Timofeev, A. V. Polyakov, et al., “Potential Accuracies of the Retrieval of Stratospheric Aerosol Scattering Coefficient by Limb Measurements of Scattered Solar Radiation,” Issled. Zemli Kosmosa, No. 4, 54–63 (2009).Google Scholar
  203. 203.
    S. G. Semakin, Yu. M. Timofeev, A. V. Polyakov, et al., “On the Determination of the Stratospheric Aerosol Microstructure from Limb Scatter Measurements,” Atmos. Ocean. Opt. 23(4), 334–338 (2010).CrossRefGoogle Scholar
  204. 204.
    S. G. Semakin, Yu. M. Timofeev, A. V. Polyakov, et al., “Error Analysis for Retrieving the Optical Characteristics of Stratospheric Aerosol by Limb Scatter Satellite Method,” Issled. Zemli Kosmosa, No. 3, 71–76 (2010).Google Scholar
  205. 205.
    A. V. Rakitin, V. S. Kostsov, and A. V. Polyakov, “Account of Atmospheric Nonstationarity in Sounding Its Composition by the Occultation Method,” Issled. Zemli Kosmosa, No. 2, 1–11 (2008).Google Scholar
  206. 206.
    Ya. A. Virolainen, “The Correlation between Aerosol Optical Parameters in Near IR Molecular Absorption Bands,” 21(3), 201–205 (2008).Google Scholar
  207. 207.
    V. S. Kostsov, A. V. Polyakov, A. V. Rakitin, et al., “The Results of Determination of NO2 Content in the Stratosphere by SAGE III Experimental Data,” Issled. Zemli Kosmosa, No. 5, 16–28 (2008).Google Scholar
  208. 208.
    A. M. Chaika, Yu. M. Timofeev, and A. V. Polyakov, “Stratospheric Aerosol by SAGE III Experimental Data,” Issled. Zemli Kosmosa, No. 2, 10–18 (2007).Google Scholar
  209. 209.
    A. M. Chayka, Yu. M. Timofeev, and A. V. Polyakov, “Integral Microphysical Parameters of Stratospheric Background Aerosol for 2002–2005 (the SAGE III Satellite Experiment),” Izv., Atmos. Ocean. Phys. 44(2), 193–206 (2008).CrossRefGoogle Scholar
  210. 210.
    A. V. Polyakov, Yu. M. Timofeev, and Ya. A. Virolainen, “Polar Stratospheric Clouds from Satellite Observational Data,” Izv., Atmos. Ocean. Phys. 44(4), 448–458 (2008).CrossRefGoogle Scholar
  211. 211.
    A. V. Polyakov, K. Rendall, L. Kharvei, et al., “New Improved Algorithm of Interpretation of SAGE III Occultation Measurements,” Issled. Zemli Kosmosa, No. 1, 31–36 (2008).Google Scholar
  212. 212.
    D. V. Ionov, “Vertical Structure of the Long-Term Trend of Stratospheric Ozone by Satellite Measurement Data over Southern Regions of Russia,” Issled. Zemli Kosmosa, No. 4, 1–6 (2009).Google Scholar
  213. 213.
    D. V. Ionov and Yu. M. Timofeev, “Regional Space Monitoring of Nitrogen Dioxide in the Troposphere,” Izv., Atmos. Ocean. Phys. 45(4), 434–443 (2009).CrossRefGoogle Scholar
  214. 214.
    K. Hocke, N. Kampfer, D. Ruffieux, et al., “Comparison and Synergy of Stratospheric Ozone Measurements by Satellite Limb Sounders and the Ground-Based Microwave Radiometer SOMORA,” Atmos. Chem. Phys., No. 7, 4117–4131 (2007).Google Scholar
  215. 215.
    D. V. Ionov, Y. M. Timofeyev, V. P. Sinyakov, et al., “Ground-Based Validation of EOS-Aura OMI NO2 Vertical Column Data in the Midlatitude Mountain Ranges of Tien Shan (Kyrgyzstan) and Alps (France),” J. Geophys. Res. 113, D15S08 (2008). doi 10.1029/2007JD008659CrossRefGoogle Scholar
  216. 216.
    E. A. Celarier, E. J. Brinksma, J. F. Gleason, et al., “Validation of Ozone Monitoring Instrument Nitrogen Dioxide Columns,” J. Geophys. Res. 113, D15S15 (2008). doi 10.1029/2007JD008908CrossRefGoogle Scholar
  217. 217.
    G. Wetzel, A. Bracher, B. Funke, et al., “Validation of MIPAS-ENVISAT NO2 Operational Data,” Atmos. Chem. Phys., No. 7, 3261–3284 (2007).Google Scholar
  218. 218.
    F. Hendrick, J.-P. Pommereau, F. Goutail, et al., “NDACC UV-Visible Total Ozone Measurements: Improved Retrieval and Comparison with Correlative Satellite and Ground-Based Observations,” Atmos. Chem. Phys. Discuss., No. 10, 20405–20460 (2010). doi 10.5194/acpd-10-20405-2010Google Scholar
  219. 219.
    S. A. Sitnov, “Analysis of the Quasi-Biennial Variability of Carbon Monoxide Total Column,” Izv., Atmos. Ocean. Phys. 44(4), 459–466 (2008).CrossRefGoogle Scholar
  220. 220.
    S. A. Sitnov, “Analysis of Spatial-Temporal Variability of Tropospheric NO2 over Moscow Megapolis Using OMI Spectrometer (Aura Satellite) Data,” Dokl. Earth Sci. 429(9), 1511–1517 (2009).CrossRefGoogle Scholar
  221. 221.
    S. A. Sitnov, “Analysis of Satellite Observations of the Tropospheric NO2 Content over the Moscow Region,” Izv., Atmos. Ocean. Phys. 47(2), 166–185 (2011).CrossRefGoogle Scholar
  222. 222.
    S. A. Sitnov, “Satellite Monitoring of Atmospheric Gaseous Species and Optical Characteristics of Atmospheric Aerosol over the European Part of Russia in April–September 2010,” Dokl. Earth Sci. 437(1), 368–373 (2011).CrossRefGoogle Scholar
  223. 223.
    A. N. Rublev, G. Yu. Grigor’ev, T. A. Udalova, et al., “Regression Models for the Estimation of Carbon Exchange in Boreal Forests,” Atmos. Ocean. Opt. 23(2), 111–117 (2010).CrossRefGoogle Scholar
  224. 224.
    E. V. Volkova and A. B. Uspenskii, “Detection of Clouds and Identification of Their Parameters from the Satellite Data in the Daytime,” Russ. Meteorol. Hydrol. 32(12), 723–732 (2007).CrossRefGoogle Scholar
  225. 225.
    E. V. Volkova and A. B. Uspenskii, “Estimation of Cloud-Cover Parameters in Daylight Time by Data of the METEOSAT-8 Geostationary Meteorological Satellite,” Sovr. Prob. Dist. Zond. Zemli Kosmosa 5(1), 441–450 (2008).Google Scholar
  226. 226.
    E. V. Volkova and A. B. Uspenskii, “Comparative Analysis of Estimates for the Height of the Upper Boundary of Cloudiness by AVHRR MIS3 NOAA Radiometer and Meteorological Radar Data,” Sovr. Prob. Dist. Zond. Zemli Kosmosa 6(11), 104–110 (2009).Google Scholar
  227. 227.
    V. I. Solov’ev and S. A. Uspenskii, “Monitoring of Soil Surface Temperature by Data of New-Generation Geostationary Meteorological Satellites,” Issled. Zemli Kosmosa, No. 3, 79–89 (2009).Google Scholar
  228. 228.
    V. I. Solov’ev, A. B. Uspenskii, and S. A. Uspenskii, “Derivation of Land Surface Temperature Using Measurements of IR Radiances from Geostationary Meteorological Satellites,” Russ. Meteorol. Hydrol. 35(3), 159–167 (2010).CrossRefGoogle Scholar
  229. 229.
    E. L. Muzylev, A. B. Uspenskii, Z. P. Startseva, et al., “Determination of Characteristics of Underlying Surface by AVHRR and MODIS Data and Their Use in the Model of Vertical Heat and Moisture Transfer for River Watershed,” Sovr. Prob. Dist. Zond. Zemli Kosmosa 5(1), 142–154 (2008).Google Scholar
  230. 230.
    E. L. Muzylev, A. B. Uspenskii, Z. P. Startseva, et al., “Use of Estimates for Temperatures of Underlying Surface and vegetation Characteristics by High-Resolution Satellite Data in Models of Vertical Heat and Moisture Exchange for River Watershed,” Sovr. Prob. Dist. Zond. Zemli Kosmosa 6(11), 400–410 (2009).Google Scholar
  231. 231.
    E. L. Muzylev, A. B. Uspenskii, Z. P. Startseva, et al., “Modeling Water and Heat Balance Components for the River Bsin Using Remote Sensing Data on Underlying Surface Characteristics,” Russ. Meteorol. Hydrol. 35(3), 225–235 (2010).CrossRefGoogle Scholar
  232. 232.
    A. B. Uspenskii, “Current State and Prospects of Remote Temperature-Moisture Sensing of the Earth’s Atmosphere,” Issled. Zemli Kosmosa, No. 2, 26–36 (2010).Google Scholar
  233. 233.
    A. V. Kukharskii and A. B. Uspenskii, “Determination of Tropospheric Mean Carbon Dioxide Concentration from Satellite High Spectral Resolution IR-Sounder Data,” Russ. Meteorol. Hydrol. 34(4), 202–211 (2009).CrossRefGoogle Scholar
  234. 234.
    A. V. Kukharskii and A. B. Uspenskii, “Monitoring of Carbon Dioxide Content in the Troposphere over Boreal Ecosystems of Siberia,” Sovr. Prob. Dist. Zond. Zemli Kosmosa 7(4), 204–211 (2010).Google Scholar
  235. 235.
    V. V. Melentyev and V. Chernook, “Multi-Spectral Airborne and Satellite Survey as Component of the Spatial Information System for Monitor and Management of Wildlife Ecology,” in Spatial Information Management in Wildlife Ecology, Ed. by F. Huettman (Springer, Tokyo, 2009), pp. 324–356.Google Scholar
  236. 236.
    G. V. Alekseev, F. I. Danilov, V. M. Kattsov, et al., “Changes in the Climate and Sea Ice of the Northern Hemisphere in the 20th and 21st Centuries from Data of Observations and Modeling,” Izv., Atmos. Ocean. Phys. 45(6), 675–586 (2009).CrossRefGoogle Scholar
  237. 237.
    V. N. Kudryavtsev and V. K. Makin, “Model of the Spume Sea Spray Generation,” Geophys. Res. Lett. 36, L06801 (2009). doi 10.1029/2008GL036871CrossRefGoogle Scholar
  238. 238.
    L. M. Mitnik, M. L. Mitnik, and E. V. Zabolotskikh, “Microwave Sensing of the Atmosphere-Ocean System with ADEOS-II AMSR and Aqua AMSR-E,” J. Remote Sens. Soc. Japan 29(1), 156–166 (2009).Google Scholar
  239. 239.
    A. A. Korosov, E. A. Morozov, D. V. Pozdnyakov, et al., “Identification and Mapping of Blooming Areas of Coccolithophores in the Biscayne Bay by Satellite Data,” Issled. Zemli Kosmosa, No. 3, 67–78 (2009).Google Scholar
  240. 240.
    D. V. Pozdnyakov, A. A. Korosov, N. A. Petrova, et al., “Investigation of the “Hysteresis” Character of the Return of Lake Ladoga from the Mesotrophic State,” Issled. Zemli Kosmosa, No. 1, 45–59 (2009).Google Scholar
  241. 241.
    A. A. Korosov, D. V. Pozdnyakov, A. Folkestad, et al., “Semi-Empirical Algorithm for the Retrieval of Ecology-Relevant Water Constituents in Various Aquatic Environments,” Algorithms 2, 470–497 (2009). doi 10.3390/a2010470CrossRefGoogle Scholar
  242. 242.
    A. F. Nerushev, E. K. Kramchaninova, and V. I. Solov’ev, “Determination of Characteristics of Atmospheric Motions from Satellite Multiwave Remote Sensing Data,” Izv., Atmos. Ocean. Phys. 43(4), 442–450 (2007).CrossRefGoogle Scholar
  243. 243.
    K. G. Gribanov, R. Imasu, A. Yu. Toptygin, et al., “Method and Results of Retrieval of the Methane Content in the Atmosphere of Western Siberia from AIRS Data,” Atmos. Ocean. Opt. 20(10), 805–809 (2007).Google Scholar
  244. 244.
    K. G. Gribanov, V. I. Zakharov, K. S. Alsynbaev, et al., “Method for Determination of the Casing-Head Gas Outcome in Flares Using Data of Satellite Sounding in IR Channels by MODIS-Type Sensors,” Atmos. Ocean. Opt. 20(1), 60–64 (2007).Google Scholar
  245. 245.
    K. G. Gribanov, R. Imasu, and V. I. Zakharov, “Neural Networks for CO2 Profile Retrieval from the Data of GOSAT/TANSO-FTS,” Atmos. Ocean. Opt. 23(1), 42–47 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.St. Petersburg State UniversityPetrodvorets, St. PetersburgRussia

Personalised recommendations