Izvestiya, Atmospheric and Oceanic Physics

, Volume 48, Issue 1, pp 15–29 | Cite as

Modeling of the World Ocean circulation with the four-dimensional assimilation of temperature and salinity fields

Article

Abstract

The problem of modeling the World Ocean circulation with the four-dimensional assimilation of temperature and salinity fields is considered. A mathematical model of the ocean general circulation and a numerical algorithm for its solution are formulated. The model equations are written in a σ coordinate system on the sphere with the North Pole shifted to the point of the continent (60° E, 60.5° N). The model has a flexible numerical structure and consists of two parts: the forward prognostic model and its adjoint analog. The numerical algorithm for solving the forward and adjoint problems is based on the method of multicomponent splitting. This method includes splitting with respect to physical processes and geometric coordinates. Three series of numerical experiments are performed: (1) a test solution to the problem of the four-dimensional variational assimilation, (2) modeling of the World Ocean circulation with the variational assimilation of climatic temperature and salinity fields, and (3) modeling of the World Ocean circulation with the variational assimilation of climatic temperature and salinity fields and the data of Argo buoys. The results of calculations demonstrate the expediency of using the model of World Ocean circulation with the procedure of assimilating observational data for a description of the general structure of thermohaline fields.

Keywords

mathematical modeling the World Ocean numerical algorithm variational assimilation observational data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Sarkisyan, “Major Advances and Problems in Modeling Long-Term World-Ocean Climate Changes,” Izv. Ocean. Atmos. Phys. 38(6), 664–681 (2002).Google Scholar
  2. 2.
    G. I. Marchuk, A. S. Rusakov, V. B. Zalesny, et al., “Splitting Numerical Technique with Application to the High Resolution Simulation of the Indian Ocean Circulation,” Pure Appl. Geophys. 162, 1407–1429 (2005).CrossRefGoogle Scholar
  3. 3.
    A. S. Sarkisyan and J. E. Suendermann, Modelling Ocean Climate Variability (Springer Science + Business Media B.V, New York, 2009).CrossRefGoogle Scholar
  4. 4.
    V. B. Zalesny and V. O. Ivchenko, “Modeling the Global Circulation Response and the Regional Response of the Arctic Ocean to the External Forcing Anomalies,” Oceanology 50(6), 829–840 (2010).CrossRefGoogle Scholar
  5. 5.
    E. M. Volodin, N. A. Diansky, and A. V. Gusev, “Simulating Present-Day Climate with the INMCM4.0 Coupled Model of the Atmospheric and Oceanic General Circulations,” Izv. Ocean. Atmos. Phys. 46(4), 414–431 (2010).CrossRefGoogle Scholar
  6. 6.
    N. A. Diansky and E. M. Volodin, “Simulation of Present-Day Climate with a Coupled Atmosphere-Ocean General Circulation Model,” Izv. Ocean. Atmos. Phys. 38(6), 732–747 (2002).Google Scholar
  7. 7.
    V. V. Knysh, G. K. Demyshev, G. K. Korotaev, et al., “Four-Dimensional Climate of Seasonal Black Sea Circulation,” Russ. J. Numer. Anal. Math. Modelling 16(5), 409–426 (2001).Google Scholar
  8. 8.
    G. I. Marchuk and V. V. Penenko, “Application of Optimization Methods to the Problem of Mathematical Simulation of Atmospheric Processes and Environment,” in Modelling and Optimization of Complex Systems. Proc. the IFIP-TC7 Working Conf. Ed. by G. I. Marchuk, (Springer, New York, 1978), pp. 240–252.Google Scholar
  9. 9.
    F. -X. Le Dimet and O. Talagrand, “Variational Algorithms for Analysis and Assimilation of Meteorological Observations: Theoretical Aspects,” Tellus 38A, 97–110 (1986).CrossRefGoogle Scholar
  10. 10.
    G. I. Marchuk and V. B. Zalesny, “A Numerical Technique for Geophysical Data Assimilation Problem Using Pontryagin’s Principle and Splitting-Up Method,” Russ. J. Numer. Anal. Math. Modelling 8(4), 311–326 (1993).CrossRefGoogle Scholar
  11. 11.
    V. I. Agoshkov and G. I. Marchuk, “On Solvability and Numerical Solution of Data Assimilation Problems,” Russ. J. Numer. Anal. Math. Modelling 8(1), 1–16 (1993).CrossRefGoogle Scholar
  12. 12.
    L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, et al., The Mathematical Theory of Optimal Processes (Wiley, New York, 1962).Google Scholar
  13. 13.
    J.-L. Lions, Control Optimal des Systemes Gouvernes par des Equations aux Derivees Partielles (Dunod, Paris, 1968).Google Scholar
  14. 14.
    G. I. Marchuk, “Formulation of Theory of Perturbations for Complicated Models,” Appl. Math. Optimization 2, 1–33 (1975).CrossRefGoogle Scholar
  15. 15.
    G. I. Marchuk, Adjoint Equations and Analysis of Complex (Kluwer, Dordrecht, 1995).Google Scholar
  16. 16.
    M. Wenzel and V. B. Zalesnyi, “Data Assimilation in a One-Dimensional Heat Convection-Diffusion Model in the Ocean,” Izv. Akad. Nauk, Fiz. Atm. Okeana 32(5), 564–579 (1996).Google Scholar
  17. 17.
    G. Marchuk, V. Shutyaev, and V. Zalesny, “Approaches to the Solution of Data Assimilation Problems,” in Optimal Control and Partial Differential Equations, Ed. by J. L. Menaldi, E. Rofman, and A, Sulem (IOS/Press, Amsterdam, 2001), pp. 489–497.Google Scholar
  18. 18.
    V. I. Agoshkov, F. P. Minyuk, A. S. Rusakov, et al., “Study and Solution of Identification Problems for Nonstationary 2D- and 3D-Convection-Diffusion Equation,” Russ. J. Numer. Anal. Math. Modelling 20(1), 19–43 (2005).CrossRefGoogle Scholar
  19. 19.
    V. I. Agoshkov, E. I. Parmuzin, and V. P. Shutyaev, “A Numerical Algorithm of Variational Data Assimilation for Reconstruction of Salinity Fluxes on the Ocean Surface,” Russ. J. Numer. Anal. Math. Modelling 23(2), 135–161 (2008).CrossRefGoogle Scholar
  20. 20.
    V. I. Agoshkov, S. A. Lebedev, and E. I. Parmuzin, “Numerical Solution to the Problem of Variational Assimilation of Operational Observational Data on the Ocean Surface Temperature,” Izv. Ocean. Atmos. Phys. 45(1), 76–107 (2009).Google Scholar
  21. 21.
    J. Blum, F.-X. Le Dimet, and I. M. Navon, “Data Assimilation for Geophysical Fluids,” in Computational Methods for the Atmosphere and the Oceans, Special Vol. Handbook of Numerical Analysis, Ed. by P. G. Giarlet, vol. XIV, pp. 377–434Google Scholar
  22. 22.
    V. B. Zalesny, G. I. Marchuk, V. I. Agoshkov, et al., “Numerical Simulation of Large-Scale Ocean Circulation Based on the Multicomponent Splitting Method,” Russ. J. Numer. Anal. Math. Modelling 25(6), 581–609 (2010).CrossRefGoogle Scholar
  23. 23.
    G. I. Marchuk, “Splitting and Alternating Direction Methods,” in Handbook of Numerical Analysis, Ed. by P. G. Ciarlet and J. L. Lions (North-Holland, Amsterdam, 1990), vol. 1, pp. 197–462.Google Scholar
  24. 24.
    V. B. Zalesny and A. S. Rusakov, “Numerical Algorithm of Data Assimilation Based on Splitting and Adjoint Equation Methods,” Russ. J. Numer. Anal. Math. Modelling 22(2), 199–219 (2007).CrossRefGoogle Scholar
  25. 25.
    V. B. Zalesny and A. V. Gusev, “Mathematical Model of the World Ocean Dynamics with Algorithms of Variational Assimilation of Temperature and Salinity Fields,” Russ. J. Numer. Anal. Math. Modelling 24(2), 171–190 (2009).CrossRefGoogle Scholar
  26. 26.
    J.-C. Gilbert and C. Lemarechal, Some numerical experiment with variable storage quasi-Newton algorithms. Math. Program. B, 408–435 (1989).Google Scholar
  27. 27.
    N. G. Yakovlev, “Coupled Model of Ocean General Circulation and Sea Ice Evolution in the Arctic Ocean,” Izv. Ocean. Atmos. Phys. 39(3), 394–409 (2003).Google Scholar
  28. 28.
    V. B. Zalesny, N. B. Zakharova, and A. V. Gusev, “Four-Dimensional Problem of Variational Initialization of Hydrophysical Fields of the World Ocean,” Russ. J. Numer. Anal. Math. Modelling 26(2), 209–229 (2011).CrossRefGoogle Scholar
  29. 29.
    V. I. Lebedev, “Difference Analogues of Orthogonal Decompositions, Basic Differential Operators and the Main Initial-Boundary Problems of Mathematical Physics,” Zh. Vysch. Matem. Matem. Fiz. 4(6), 449–465 (1964).Google Scholar
  30. 30.
    G. I. Marchuk, V. I. Agoshkov, and V. P. Shutyaev, Adjoint Equations and Perturbation Algorithms in Nonlinear Problems (CRC Press, New York, 1996).Google Scholar
  31. 31.
    S. Levitus, T. P. Boyer, M. E. Conkright, et al., World Ocean Database 1998 (NOAA Atlas NESDIS 18, 1998).Google Scholar
  32. 32.
    A. N. Tikhonov and V. Ya. Arsenin, Methods for Solving Ill-Posed Problems (Nauka, Moscow, 1979).Google Scholar
  33. 33.
    S. M. Griffies, M. Winton, and B. L. Samuels, The Large and Yeager (2004) Dataset and Core, NOAA Geophysical Fluid Dynamics Laboratory, PO Box 308 (Forrestal Campus Princeton, New Jersey, 08542 USA, 2004). http://data1.gfdl.noaa.gov/nomads/forms/mom4/CORE.html Google Scholar
  34. 34.
    G. I. Marchuk, J. Schroeter, and V. B. Zalesny, “Numerical Study of the Global Ocean Equilibrium Circulation,” Russ. J. Numer. Anal. Math. Modelling 18(4), 307–335 (2003).CrossRefGoogle Scholar
  35. 35.
    A. S. Sarkisyan and V. B. Zalesny, “Splitting-Up Method and Adjoint Equation Method in the Ocean Dynamics Problem,” Russ. J. Numer. Anal. Math. Modelling 15(3–4), 333–347 (2000).CrossRefGoogle Scholar
  36. 36.
    N. B. Zakharova and S. A. Lebedev, “Algorithms for Interpolation and Extrapolation of Operational Geophysical Observation Data,” Sb. Statei Molodykh Uchenykh Fakul’teta VMK MGU, no. 6, 177–188 (2009).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations