Izvestiya, Atmospheric and Oceanic Physics

, Volume 47, Issue 6, pp 699–707 | Cite as

Air pollution over European Russia and Ukraine under the hot summer conditions of 2010

  • A. M. Zvyagintsev
  • O. B. Blum
  • A. A. Glazkova
  • S. N. Kotel’nikov
  • I. N. Kuznetsova
  • V. A. Lapchenko
  • E. A. Lezina
  • E. A. Miller
  • V. A. Milyaev
  • A. P. Popikov
  • E. G. Semutnikova
  • O. A. Tarasova
  • I. Yu. Shalygina
Article

Abstract

Variations in the concentrations of both primary (PM10, CO, and NOx) and secondary (ozone) pollutants in the atmosphere over the Moscow and Kirov regions, Kiev, and Crimea under the conditions of the anomalously hot summer of 2011 are given and analyzed. The concentrations of ozone, PM10, CO, and NOx in the atmosphere over the Moscow region exceeded their maximum permissible levels almost continuously from late July to late August 2010. The highest level of atmospheric pollution was observed on August 4–9, when the Moscow region was within a severe plume of forest and peatbog fires. The maximum single concentrations of ozone, which exceeded its maximum permissible level two-three times, were accompanied by high concentrations of combustion products: the concentrations of PM10 and CO were also three-seven times higher than their maximum permissible concentrations. The maximum levels of air pollution were observed under the meteorological conditions that were unfavorable for pollution scattering, first of all, at a small vertical temperature gradient in the lower atmospheric boundary layer. The number of additional cases of mortality due to the exceeded maximum permissible concentrations of PM10 and ozone in the atmosphere over Moscow was estimated. Under the weather conditions that were close to those for the Moscow region, the air quality remained mainly satisfactory in the Kirov region, Kiev, and Crimea, which were almost not affected by fires.

Keywords

air pollution surface ozone particulate matter carbon monoxide hot weather wildfires emissions mortality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. P. Shakina and A. R. Ivanova, “Blocking Anticyclones: the Current State of Research and Forecasting,” Meteorol. Gidrol., No. 11, 5–18 (2010).Google Scholar
  2. 2.
    Air Quality Criteria for Ozone and Related Photochemical Oxidants, Vol. 1, EPA/600/R-05/004aF (U.S. EPA, Washington, D.C., 2006).Google Scholar
  3. 3.
    A. M. Zvyagintsev, I. B. Belikov, V. I. Egorov, et al., “Positive Anomalies in the Surface Ozone Concentration in July–August 2002 over Moscow and Its Suburbs,” Izv. Atmos. Ocean. Phys. 40(1), 68–79 (2004).Google Scholar
  4. 4.
    C. Ordonez, N. Elguindi, O. Stein, et al., “Global Model Simulations of Air Pollution during the 2003 European Heat Wave,” Atmos. Chem. Phys. 10, 789–815 (2010).CrossRefGoogle Scholar
  5. 5.
    S. Solberg, O. Hov, A. Soevde, et al., “European Surface Ozone in the Extreme Summer 2003,” J. Geophys. Res. 113, D07307 (2008). doi: 10.1029/2007JD009098CrossRefGoogle Scholar
  6. 6.
    M. Tressol, C. Ordonez, R. Zbinden, et al., “Air Pollution During the 2003 European Heat Wave as Seen by MOZAIC Airliners,” Atmos. Chem. Phys. 8, 2133–2150 (2008).CrossRefGoogle Scholar
  7. 7.
    G. I. Gorchakov, E. G. Semutnikova, E. V. Zotkin, et al., “Variations in Gaseous Pollutants in the Air Basin of Moscow,” Izv. Atmos. Ocean. Phys. 42(2), 156–170 (2006).CrossRefGoogle Scholar
  8. 8.
    A. M. Zvyagintsev and I. N. Kuznetsova, “Surface Ozone Variations in Moscow Environs: The Results of Continuous Ten-Year Observations,” Izv. Atmos. Ocean. Phys. 38(4), 431–439 (2002).Google Scholar
  9. 9.
    E. N. Kadygrov, “Microwave Radiometry of the Atmospheric Boundary Layer: The Method, Instruments, and Measurements,” Opt. Atmos. Okeana 22(7), 697–704 (2009).Google Scholar
  10. 10.
    WHO. Air Quality Guidelines: Global Update 2005. Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide (WHO, 2006).Google Scholar
  11. 11.
    Bulletin on the State of Atmospheric Air in Moscow in 2005 (Mosekomonitoring, Moscow, 2006) [in Russian].Google Scholar
  12. 12.
    J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley-Intersc. Publ, New York, 1998).Google Scholar
  13. 13.
    A. M. Zvyagintsev, G. Kakadzhanova, and O. A. Tarasova, “Effect of Transfer Directions on the Seasonal Course of Concentrations of Trace Gases in the Atmosphere in Europe,” Meteorol. Gidrol., No. 7, 18–28 (2010).Google Scholar
  14. 14.
    A. M. Zvyagintsev, I. B. Belikov, N. F. Elansky, et al., “Statistical Modeling of Maximum Daily Concentrations of Surface Ozone,” Opt. Atmos. Okeana 23(2), 127–135 (2010).Google Scholar
  15. 15.
    Hygienic Standards GN 2.1.6.1338-03 “The Maximum Permissible Concentration (MPCs) of Pollutants in the Air of Populated Areas” (with Appendices and Amendments No. 2 GN 2.1.6.1983-05).Google Scholar
  16. 16.
    V. I. Demin, A. M. Zvyagintsev, and I. N. Kuznetsova, “On the Existing Regulations in the Russian Federation on the Content of Ozone in Ambient Air,” Ekol. Chelov., No. 1, 4–8 (2009).Google Scholar
  17. 17.
    A. M. Zvyagintsev, I. B. Belikov, N. F. Elanskii, et al., “Variability of Surface Ozone Concentrations in Moscow and Kiev,” Meteorol. Gidrol., No. 12, 26–35 (2010).Google Scholar
  18. 18.
    L. T. Matveev, Fundamentals of General Meteorology. Atmospheric Physics (Gidrometeoizdat, St. Petersburg, 2000) [in Russian].Google Scholar
  19. 19.
    A. M. Zvyagintsev and I. N. Kuznetsova, “Surface Ozone Variations in Moscow Environs: The Results of Continuous Ten-Year Observations,” Izv. Atmos. Ocean. Phys. 38(4), 431–439 (2002).Google Scholar
  20. 20.
    S. Sillman, “The Relation between Ozone, NOx and Hydrocarbons in Urban and Polluted Rural Environments,” Atmos. Environ. 33, 1821–1845 (1999).CrossRefGoogle Scholar
  21. 21.
    M. Chin, D. J. Jacob, J. W. Munger, et al., “Relationship of Ozone and Carbon Monoxide over North America,” J. Geophys. Res. 99(D7), 14565–14574 (1994).CrossRefGoogle Scholar
  22. 22.
    G. A. Morris, S. Hersey, A. M. Thompson, et al., “Alaskan and Canadian Forest Fires Exacerbate Ozone Pollution over Houston, Texas, on 19 and 20 July 2004,” J. Geophys. Res. 111, 03 (2006). doi: 10.1029/2006JD007090Google Scholar
  23. 23.
    A. Stohl, T. Berg, J. F. Burkhart, et al., “Arctic Smoke—Record High Air Pollution Levels in the European Arctic Due to Agricultural Fires in Eastern Europe in Spring 2006,” Atmos. Chem. Phys. 7, 511–534 (2007).CrossRefGoogle Scholar
  24. 24.
    P. Fischer, B. Brunekreef, and E. Lebret, “Air Pollution Related Deaths during the 2003 Heat Wave in the Netherlands,” Atmos. Environ. 38(8), 1083–1085 (2004).CrossRefGoogle Scholar
  25. 25.
    L. Filleul, S. Cassadou, S. Medina, et al., “The Relation between Temperature, Ozone and Mortality in Nine French Cities during the Heat Wave of 2003,” Environ. Health Perspect. 114(9), 1344–1347 (2006).CrossRefGoogle Scholar
  26. 26.
    J. R. Stedman and A. J. Kent, “An Analysis of the Spatial Patterns of Human Health Related Surface Ozone Metrics across the UK in 1995, 2003 and 2005,” Atmos. Environ. 42(8), 1702–1716 (2008).CrossRefGoogle Scholar
  27. 27.
  28. 28.
    B. A. Revich, “Climate Change and the Threat to the Health of the Russian Population,” in Russia in the Outside World: 2004 (Analytical Yearbook), Ed. by N. N. Marfenin (Modus-K-Eterna, Moscow, 2005), pp. 62–80 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. M. Zvyagintsev
    • 1
  • O. B. Blum
    • 2
  • A. A. Glazkova
    • 3
  • S. N. Kotel’nikov
    • 4
  • I. N. Kuznetsova
    • 3
  • V. A. Lapchenko
    • 5
  • E. A. Lezina
    • 6
  • E. A. Miller
    • 1
  • V. A. Milyaev
    • 4
  • A. P. Popikov
    • 6
  • E. G. Semutnikova
    • 6
  • O. A. Tarasova
    • 7
  • I. Yu. Shalygina
    • 3
  1. 1.Central Aerological ObservatoryDolgoprudnyi, Moscow oblastRussia
  2. 2.N.N. Gryshko National Botanical GardenNational Academy of Sciences of UkraineKievUkraine
  3. 3.Russian Hydrometeorological Research CenterMoscowRussia
  4. 4.General Physics Institute, Tarusa BranchRussian Academy of SciencesTarusa, Kaluzhskaya oblastRussia
  5. 5.Karadag Nature ReserveNational Academy of Sciences of UkraineFeodosiyaUkraine
  6. 6.Mosecomonitoring, State Environmental InstitutionMoscowRussia
  7. 7.World Meteorological OrganizationGenevaSwitzerland

Personalised recommendations