Izvestiya, Atmospheric and Oceanic Physics

, Volume 47, Issue 3, pp 301–312

Simulation of changes in global ozone and atmospheric dynamics in the 21st century with the chemistry-climate model SOCOL

  • V. A. Zubov
  • E. V. Rozanov
  • I. V. Rozanova
  • T. A. Egorova
  • A. A. Kiselev
  • I. L. Karol’
  • V. Schmutz
Article

Abstract

The solar climate ozone links (SOCOL) three-dimensional chemistry-climate model is used to estimate changes in the ozone and atmospheric dynamics over the 21st century. With this model, four numerical time-slice experiments were conducted for 1980, 2000, 2050, and 2100 conditions. Boundary conditions for sea-surface temperatures, sea-ice parameters, and concentrations of greenhouse and ozone-depleting gases were set following the IPCC A1B scenario and the WMO A1 scenario. From the model results, a statistically significant cooling of the model stratosphere was obtained to be 4–5 K for 2000–2050 and 3–5 K for 2050–2100. The temperature of the lower atmosphere increases by 2–3 K over the 21st century. Tropospheric heating significantly enhances the activity of planetary-scale waves at the tropopause. As a result, the Eliassen-Palm flux divergence considerable increases in the middle and upper stratosphere. The intensity of zonal circulation decreases and the meridional residual circulation increases, especially in the winter-spring period of each hemisphere. These dynamic changes, along with a decrease in the concentrations of ozone-depleting gases, result in a faster growth of O3 outside the tropics. For example, by 2050, the total ozone in the middle and high latitudes approaches its model level of 1980 and the ozone hole in Antarctica fills up. The superrecovery of the model ozone layer in the middle and high latitudes of both hemispheres occurs in 2100. The tropical ozone layer recovers far less slowly, reaching a 1980 level only by 2100.

Keywords

ozone simulation chemistry-climate models atmospheric dynamics climate change 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Scientific assessment of ozone depletion: 2006, Global Ozone Research and Monitoring Project-Rep. 50, World Meteorological Organization (Switzerland, Genewa, 2007).Google Scholar
  2. 2.
    Climate change 2001. The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by J. T. Houghton, Y. Ding, D. J. Griggs, et al. (Cambrige Univ. Press, Cambridge, 2001).Google Scholar
  3. 3.
    Climate change 2007. The Scientific Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by S. Solomon, D. Qin, M. Manning, et al. (Cambridge Univ. Press, Cambridge, UK and New York, NY, USA, 996 pp., 2007).Google Scholar
  4. 4.
    M. A. Olsen, M. R. Schoeberl, and J. E. Nielsen, “Response of Stratospheric Circulation and Stratosphere-Troposphere Exchange to Changing Sea Surface Temperatures,” J. Geophys. Res. 112 (D16104), doi: 10.1029/2006JD008012 (2007).Google Scholar
  5. 5.
    N. Butchart, A. A. Scaife, M. Bourqui, et al., “Simulations of Anthropogenic Change in the Strength of the Brewer-Dobson Circulation,” Clim. Dyn. 27(7–8), 727–741 (2006).CrossRefGoogle Scholar
  6. 6.
    S. J. Eichelberger and D. L. Hartmann, “Changes in the Strength of the Brewer-Dobson Circulation in a Simple AGCM,” Geophys. Rev. Lett. 32 (L15807), doi: 10.1029/2005GL022924 (2005).Google Scholar
  7. 7.
    J. Austin, D. Shindell, S. R. Beagley, et al., “Uncertainties and Assessments of Chemistry-Climate Models of the Stratosphere,” Atmos. Chem. Phys. 3, 1–27 (2003).CrossRefGoogle Scholar
  8. 8.
    S.-W. Son, L. M. Polavni, D. W. Waugh, et al., “The Impact of Stratospheric Ozone Recovery on the Southern Hemisphere Westerly Jet,” Science 320(5882), 1486–1489 (2008).CrossRefGoogle Scholar
  9. 9.
    V. Eyring, N. Butchart, D. W. Waugh, et al., “Assessment of Temperature, Trace Species, and Ozone in Chemistry-Climate Model Simulation of the Recent Past,” J. Geophys. Res. 111 (D22308), doi: 10.1029/2006JD007332 (2006).Google Scholar
  10. 10.
    V. Eyring, D. E. Kinnison, and T. G. Shepherd, “Overview of Planned Coupled Chemistry-Climate Simulations to Support Upcoming Ozine and Climate Assessments,” SPARC Newsletters 25, 11–17 (2005).Google Scholar
  11. 11.
    V. Eyring, D. W. Waugh, G. E. Bodeker, et al., “Multimodel Projections of Stratospheric Ozone in the 21st Century,” J.Geophys. Res. 112 (D16303), doi: 10.1029/2006JD008332 (2007).Google Scholar
  12. 12.
    C. Kodama, T. Iwasaki, K. Shibata, et al., “Changes in the Stratospheric Mean Meridional Circulation due to Increased CO2: Radiation and Sea Surface Temperature-Induced Effects,” J. Geophys. Res. 112 (D16103), doi: 10.1029/2006JD008219 (2007).Google Scholar
  13. 13.
    N. P. Gillett, M. R. Allen, and K. D. Williems, “Modelling the Atmospheric Response to Double CO2 and Depleted Stratospheric Ozone Using a Stratosphere-Resolving Coupled GCM,” Q. J. R. Meteorol. Soc. 129(589), 947–966, doi:10.1256/qj.02102 (2003).CrossRefGoogle Scholar
  14. 14.
    S. P. Smyshlyaev, V. Ya. Galin, P. A. Zimenko, et al., Prognosticheskie otsenki izmeneniya soderzhaniya atmosfernogo ozona v pervoi polovine XXI veka, Izv. Akad. Nauk, Fiz. Atmos. Okeana 42(2), 191–204 (2006) (Prognostic Estimations of the Atmospheric Ozone Content in the First Half of the 21st Century) [Izv. Atmos. Ocean Phys. 42 (2), 171–183 (2006)].Google Scholar
  15. 15.
    V. Ya. Galin, S. P. Smyshlyaev, and E. M. Volodin, Sovmestnaya khimiko-klimaticheskaya model’ atmosfery, Izv. Akad. Nauk, Fiz. Atmos. Okeana 43(4), 437–452 (2007) (Combined Chemistry-Climate Model of the Atmosphere) [Izv. Atmos. Ocean Phys. 43 (4), 399–412 (2007)].Google Scholar
  16. 16.
    T. Egorova, E. Rozanov, V. Zubov, et al., “Chemistry-Climate Model SOCOL: a Validation of the Present-Day Climatology,” Atmos. Chem. Phys. 5, 1557–1576 (2005).CrossRefGoogle Scholar
  17. 17.
    E. Manzini, N. A. McFarlane, and C. McLandress, “Impact of the Doppler Spread Parameterization on the Simulation of the Middle Atmosphere Circulation Using the MA/ECHAM4 General Circulation Model,” J. Geophys. Res. 102(D22), 25751–25762 (1997).CrossRefGoogle Scholar
  18. 18.
    T. A. Egorova, E. V. Rozanov, V. A. Zubov, et al., “Model for Investigating Ozone Trends (MEZON),” Izv. Akad. Nauk, Fiz. Atmos. Okeana 39(3), 310–336 (2003) [Izv., Atmos. Ocean. Phys. 39 (3), 297–292 (2003)].Google Scholar
  19. 19.
    V. A. Zubov, E. V. Rozanov, and M. E. Schlesinger, “Hybrid Scheme for 3-Dimensional Advective Transport,” Mon. Wea. Rev. 27(6), 1335–1346 (1999).CrossRefGoogle Scholar
  20. 20.
    T. Egorova, E. Rozanov, E. Manzini, et al., “Chemical and Dynamical Response to the 11-Year Variability of the Solar Irradiance Simulated with a Chemistry-Climate Model,” Geophys. Rev. Lett. 31, (L06119), doi: 10.1029/2003GL019294 (2004).Google Scholar
  21. 21.
    V. Zubov, E. Rozanov, A. Shirochkov, et al., “Modeling of Joule Heating Influence on the Circulation and Ozone Concentration in the Middle Atmosphere,” J. Atmos. Sol.-Terr. Phys. 67(1–2), 155–162 (2005).CrossRefGoogle Scholar
  22. 22.
    V. A. Zubov, E. V. Rozanov, A. V. Shirochkov, et al., “Influence of Solar Wind on Ozone and Circulation in the Middle Atmosphere: A Model Study,” Dokl. Akad. Nauk 408(2), 423–426 (2006) [Dokl. 408 (2), 595–598 (2006)].Google Scholar
  23. 23.
    M. Schraner, E. Rozanov, Schnadt-Poberaj C., et al. “Technical Note: Chemistry-Climate Model SOCOL: Version 2.0 with Improved Transport and Chemistry/Microphysics Schemes,” Atm. Chem. Phys. 8, 5957–5974 (2008).CrossRefGoogle Scholar
  24. 24.
    A. Yu. Karpechko, N. P. Gillett, B. Hassler, et al., “Quantitative Assessment of Southern Hemisphere Ozone in Chemistry-Climate Model Simulations,” Atmos. Chem. Phys. 10, 1385–1400 (2010).CrossRefGoogle Scholar
  25. 25.
    T. C. Johns, C. F. Durman, H. T. Banks, et al., “The New Hadley Center Climate Model HadGEM1: Evaluation of Coupled Simulations,” J. Clim. 19(7), 1327–1353 (2006).CrossRefGoogle Scholar
  26. 26.
    H. Von Storch and F. Zwiers, Statistical Analysis in Climate Research (Cambridge Univ. Press, Cambridge, 2001).Google Scholar
  27. 27.
    D. L. Hartmann and V. Limpasuvan, “The Stratosphere in the Climate System,” SPARC Newsletters 22, 15–18 (2004).Google Scholar
  28. 28.
    G. Brasseur and S. Solomon, Aeronomy of the Middle Atmosphere (D. Reidel, Boston, 1984).Google Scholar
  29. 29.
    R. R. Garcia and W. J. Randel, “Acceleration of the Brewer-Dobson Circulation due to Increases in Greenhouse Gases,” J. Atmos. Sci. 65(8), 2731–2739 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. A. Zubov
    • 1
  • E. V. Rozanov
    • 2
    • 3
  • I. V. Rozanova
    • 1
  • T. A. Egorova
    • 2
  • A. A. Kiselev
    • 1
  • I. L. Karol’
    • 1
  • V. Schmutz
    • 2
  1. 1.Voeikov Main Geophysical ObservatorySt. PetersburgRussia
  2. 2.Physical-Meteorological Observatory/World Radiation CenterDavosSwitzerland
  3. 3.Institute for Atmospheric and Climate ScienceEidgenossische Technische HochshuleZürichSwitzerland

Personalised recommendations