Izvestiya, Atmospheric and Oceanic Physics

, Volume 47, Issue 2, pp 252–264 | Cite as

Numerical modeling of methane emissions from lakes in the permafrost zone

  • V. M. Stepanenko
  • E. E. Machul’skaya
  • M. V. Glagolev
  • V. N. Lykossov


A brief review of published observations of methane fluxes to the atmosphere from bogs and lakes in the permafrost zone is presented. Approaches to modeling the emission of methane from bogs are considered, and their advantages and shortcomings, in particular, from the point of view of their coupling to climate models, are outlined. A one-dimensional model developed by the authors for methane generation, transport, and sink in the ground-water body system and coupled to a hydrothermodynamic model of a water body is described. The approaches used in analogous models for bogs as well as new parametrizations describing lake-specific processes are applied. A parametrization of methane generation in vicinity the lower boundary of the thawed ground zone underneath a water body (talik) is suggested. The results of calibrating this model against available observations of methane emission from the thermokarst Shuchi Lake in northeastern Siberia are discussed.


methane permafrost lakes numerical modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. L. Karol’, “Evaluation of Characteristics of the Relative Contribution of Greenhouse Gases in Global Warming,” Meteorol. Gidrol., No. 11, 5–12 (1996).Google Scholar
  2. 2.
    V. N. Krupchatnikov and A. I. Krylova, “Modeling Methane Emissions from Natural Wetlands Soils and Surface Hydrology Taking into Account the Topography,” Geogr. Prir. Res., Spets. Vyp., 272–276 (2004).Google Scholar
  3. 3.
    E. M. Volodin, “The Methane Cycle in the IBM RAS Climate Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 44(2), 163–170 (2008).Google Scholar
  4. 4.
    B. P. Walter and M. Heimann, “A Process-Based, Climate-Sensitive Model to Derive Methane Emissions from Natural Wetlands: Application to Five Wetland Sites, Sensitivity to Model Parameters, and Climate,” Global Biogeochem. Cycles 14(3), 745–765 (2000).CrossRefGoogle Scholar
  5. 5.
    L. L. Beck, “A Global Methane Emissions Program for Landfills, Coal Mines, and Natural Gas Systems,” Chemosphere 26(1–4), 447–452 (1993).CrossRefGoogle Scholar
  6. 6.
    P. Boeckx and O. van Cleemput, “Flux Estimates from Soil Methanogenesis and Methanotrophy: Landfills, Rice Paddies, Natural Wetlands and Aerobic Soils,” Environ. Monitor. Assess. 42(1–2), 189–207 (1996).CrossRefGoogle Scholar
  7. 7.
    J. Bogner, M. Meadows, and P. Czepiel, “Fluxes of Methane between Landfills and the Atmosphere: Natural and Engineered Controls,” Soil Use Manag. 13(0), 268–277 (1997).CrossRefGoogle Scholar
  8. 8.
    M. Humer and P. Lechner, “Alternative Approach to the Elimination of Greenhouse Gases from Old Landfills,” Waste Manag. Res. 17, 443–452 (1999).Google Scholar
  9. 9.
    R. D. Varber and J. G. Ferru, “Methanogenesis,” Encyclopedia of Life Science, available at www.els.net. (Nature Publ. Group, 2001).
  10. 10.
    S. L. Harder, D. T. Shindell, G. A. Schmidt, et al., “A Global Climate Model Study of CH4 Emissions during the Holocene and Glacial-Interglacial Transitions Constrained by Ice Core Data,” Global Biogeochem. Cycles 21, GB1011, doi: 10.1029/2005GB002680 (2007).CrossRefGoogle Scholar
  11. 11.
    K. M. Walter, S. A. Zimov, J. P. Chanton, et al., “Methane Bubbling from Siberian Thaw Lakes as a Positive Feedback to Climate Warming,” Nature 443(7107), 71–75 (2006).CrossRefGoogle Scholar
  12. 12.
    N. S. Panikov, A. A. Titlyanova, M. V. Paleeva, et al., “Methane Emissions from Wetlands in the South of Western Siberia,” Dokl. Akad. Nauk 330(3), 388–390 (1993).Google Scholar
  13. 13.
    I. L. Kuzin, “Contemporary Tectonics of the Khanty-Mansi Autonomous Area,” (Izd. Kartfabriki VSEGEI, St. Petersburg, 2002) [in Russian].Google Scholar
  14. 14.
    V. S. Kazantsev and M. V. Glagolev, “CH4 Emission in the Northern Taiga Subzone: The Aa3 ’standard Model’,” in The Dynamics of the Environment and Global Climate Change: Proceedings of the Unesco Chair of the Ugra State University, Ed. by M. V. Glagolev and E. D. Lapshina (NGU, Novosibirsk, 2008), Vol. 1, pp. 200–207 [in Russian].Google Scholar
  15. 15.
    M. V. Glagolev and I. E. Kleptsova, “Methane Emissions in the Tundra: The Creation of the’standard Model’ (Aa2) for Western Siberia,” Vestn. TGPU, 3(81), 77–81 (2009).Google Scholar
  16. 16.
    L. A. Morrissey and G. P. Livingston, “Methane Emissions from Alaska Arctic Tundra: An Assessment of Local Spatial Variability,” J. Geophys. Res. 97(D15), 16661–16670 (1992).Google Scholar
  17. 17.
    P. Casper, O. C. Chan, A. L. S. Furtado, et al., “Methane in an Acidic Bog Lake: The Influence of Peat in the Catchment on the Biogeochemistry of Methane,” Aquat. Sci. 65(1), 36–46 (2003).CrossRefGoogle Scholar
  18. 18.
    I. Bergström, S. Makela, P. Kankaala, et al., “Methane Efflux from Littoral Vegetation Stands of Southern Boreal Lakes: An Upscaled Regional Estimate,” Atmos. Environ. 41(2), 339–351 (2007).CrossRefGoogle Scholar
  19. 19.
    K. B. Bartlett, P. M. Crill, R. L. Sass, et al., “Methane Emissions from Tundra Environments in the Yukon-Kuskokwim Delta, Alaska,” J. Geophys. Res. 97(D15), 16645–16660 (1992).Google Scholar
  20. 20.
    S. M. Fan, S. C. Wofsy, P. S. Bakwin, et al., “Micrometeorological Measurements of CH4 and CO2 Exchange between the Atmosphere and Subarctic Tundra,” J. Geophys. Res. 97(D15), 16627–16643 (1992).Google Scholar
  21. 21.
    M. E. Repo, J. T. Huttunen, A. V. Naumov, et al., “Release of CO2 and CH4 from Small Wetland Lakes in Western Siberia,” Tellus 59B(5), 788–796 (2007).Google Scholar
  22. 22.
    M. V. Glagolev, I. E. Kleptsova, V. S. Kazantsev, et al., “CH4 Emission from Marsh Landscapes of the Subtaiga Zone of Western Siberia: The Ab4 ’standard Model’,” in Proceedings of the Eighth Siberian Conference on Climate and Environmental Monitoring, Ed. by M. V. Kabanov (Agraf-Press, Tomsk, 2009), pp. 240–242 [in Russian].Google Scholar
  23. 23.
    K. B. Bartlett and R. C. Harriss, “Review and Assessment of Methane Emissions from Wetlands,” Chemosphere 26(1–4), 261–320 (1993).CrossRefGoogle Scholar
  24. 24.
    K. M. Walter, L. C. Smith, and F. S. Chapin III, “Methane Bubbling from Northern Lakes: Present and Future Contributions to the Global Methane Budget,” Phil. Trans. R. Soc. A 365, 1657–1676 (2007).CrossRefGoogle Scholar
  25. 25.
    N. Panikov and S. Dedysh, “Cold Season CH4 and CO2 Emission from Boreal Peat Bogs (West Siberia): Winter Fluxes and Thaw Activation Dynamics,” Global Biogeochem. Cycles 14(4), 1095–1108 (2000).CrossRefGoogle Scholar
  26. 26.
    M. Dalva, T. R. Moore, P. Arp, et al., “Methane and Soil and Plant Community Respiration from Wetlands, Kejimkujik National Park, Nova Scotia: Measurements, Predictions and Climatic Change,” J. Geophys. Res. 106(D3), 2955–2962 (2001).CrossRefGoogle Scholar
  27. 27.
    S. Frolking and P. Crill, “Climate Controls on Temporal Variability of Methane Flux from a Poor Fen in Southeastern New Hampshire: Measurement and Modeling,” Global Biogeochem. Cycles 8(4), 299–327 (1994).CrossRefGoogle Scholar
  28. 28.
    L. Michaelis and M. L. Menten, “Die Kinetik der Invertinwirkung,” Biochem. Z. 49, 333 (1913).Google Scholar
  29. 29.
    C. Potter, J. Bubier, P. Crill, et al., “Ecosystem Modeling of Methane and Carbon Dioxide Fluxes for Boreal Forest Sites,” Can. J. For. Res. 31, 208–223 (2001).Google Scholar
  30. 30.
    J. R. M. Arah and K. D. Stephen, “A Model of the Processes Leading to Methane Emission from Peatland,” Atmos. Environ. 32(19), 3257–3264 (1998).CrossRefGoogle Scholar
  31. 31.
    Q. Zhuang, J. M. Melillo, D. W. Kicklighter, et al., “Methane Fluxes between Terrestrial Ecosystems and the Atmosphere at Northern High Latitudes during the Past Century: A Retrospective Analysis with a Process-Based Biogeochemistry Model,” Global Biogeochem. Cycles 18,GB3010, 23 (2004).Google Scholar
  32. 32.
    M. Cao, J. B. Dent, and O. W. Heal, “Modeling Methane Emissions from Rice Paddies,” Global Biogeochem. Cycles 9(2), 183–195 (1995).CrossRefGoogle Scholar
  33. 33.
    V. A. Vavilin, V. B. Vasiliev, A. V. Ponomarev, et al., “Simulation Model “Methane” as a Tool for Effective Biogas Production during Anaerobic Conversion of Complex Organic Matter,” Bioresource Technol. 48(2), 1–8 (1994).CrossRefGoogle Scholar
  34. 34.
    R. T. James, “Sensitivity Analysis of a Simulation Model of Methane Flux from the Florida Everglades,” Ecol. Model. 68(3–4), 119–146 (1993).CrossRefGoogle Scholar
  35. 35.
    V. M. Stepanenko and V. N. Lykosov, “Numerical Simulation of Heat and Moisture Transfer Processes in the Water Body-Soil System,” Meteorol. Gidrol., No. 3, 95–104 (2005).Google Scholar
  36. 36.
    V. M. Stepanenko, “Numerical Simulation of the Thermal Regime of Shallow Water Bodies,” Vych. Tekhnol. 10(1), 100–106 (2005).Google Scholar
  37. 37.
    H. Burchard, “Applied Turbulence Modeling in Marine Waters,” in Lecture Notes in Earth Sciences (Springer, Berlin, 2002), Vol. 100.Google Scholar
  38. 38.
    G. E. Willis and J. W. Deardorff, “A Laboratory Model of the Unstable Planetary Boundary Layer,” J. Atmos. Sci. 31(5), 1297–1307 (1974).CrossRefGoogle Scholar
  39. 39.
    H. Kato and O. M. Phillips, “On the Penetration of a Turbulent Layer into Stratified Fluid,” Fluid. Mech. 37(4), 643–655 (1969).CrossRefGoogle Scholar
  40. 40.
    E. E. Volodina, L. Bengtsson, and V. N. Lykosov, “Parameterization of Heat and Moisture Transfer Processes in the Snow Cover for Modeling Seasonal Variations in the Hydrological Cycle of the Land,” Meteorol. Gidrol., No. 5, 5–13 (2000).Google Scholar
  41. 41.
    E. M. Volodin and V. N. Lykosov, “Parametrization of Heat and Moisture Transfer in the Soil-Vegetation System for Use in Atmospheric General Circulation Models: 1. Formulation and Simulations Based on Local Observational Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 34(4), 453–465 (1998) [Izv., Atmos. Ocean. Phys., 34 (4), 405–416 (1998)].Google Scholar
  42. 42.
    V. M. Stepanenko, S. Goyette, A. Martynov, et al., “First Steps of a Lake Model Intercomparison Project: LakeMIP,” Bor. Env. Res. 15 (spec. issue), 191–202 (2010).Google Scholar
  43. 43.
    R. Wania, Modelling Northern Peatland Land Surface Processes, Vegetation Dynamics and Methane Emissions, PhD Thesis (University of Bristol, Bristol, 2007).Google Scholar
  44. 44.
    B. P. Walter, M. Heimann, R. D. Shannon, et al., “A Process-Based Model to Derive Methane Emissions from Natural Wetlands,” Max-Planck-Institut fur Meteorologie, Report No. 215 (1996).Google Scholar
  45. 45.
    E. V. Shein, “A Course in Soil Physics,” (Mosk. Gos. Univ., Moscow, 2005) [in Russian].Google Scholar
  46. 46.
    D. F. McGinnis, J. Greinert, Y. Artemov, et al., “The Fate of Rising Methane Bubbles in Stratified Waters: What Fraction Reaches the Atmosphere?,” J. Geophys. Res. 111, C09007 (2006).CrossRefGoogle Scholar
  47. 47.
    J. Greinert and D. F. McGinnis, “Single Bubble Dissolution Model-The Graphical User Interface SiBu-GUI,” Environ. Model. Software 24(8), 1012–1013 (2009).CrossRefGoogle Scholar
  48. 48.
    E. A. Paul and F. E. Clark, Soil Microbiology and Biochemistry (Academic Press, San-Diego, 1996).Google Scholar
  49. 49.
    V. A. Bell, D. G. George, R. J. Moore, et al., “Using a 1-D Mixing Model to Simulate the Vertical Flux of Heat and Oxygen in a Lake Subject to Episodic Mixing,” Ecol. Model. 190(1–2), 41–54 (2006).CrossRefGoogle Scholar
  50. 50.
    L. S. Shirokova, O. S. Pokrovsky, S. N. Kirpotin, et al., “Effect of the Permafrost Thawing on the Organic Carbon and Microbial Activity in Thermokarst Lakes of Western Siberia: Important Source of Carbon Dioxide in the Atmosphere,” American Geophysical Union, Fall Meeting, Abstract No. C11A-0486 (2008).Google Scholar
  51. 51.
    J. L. Riera, J. E. Schindler, and T. K. Kratz, “Seasonal Dynamics of Carbon Dioxide and Methane in Two Clear-Water Lakes and Two Bog Lakes in Northern Wisconsin, USA,” Can. J. Fish. Aquat. Sci. 56, 265–274 (1999).CrossRefGoogle Scholar
  52. 52.
    L. T. Matveev, Atmospheric Physics (Gidrometeoizdat, St. Petersburg, 2000) [in Russian].Google Scholar
  53. 53.
    V. A. Vavilin and V. B. Vasil’ev, Mathematical Modeling of Sewage Treatment by Activated Sludge (Nauka, Moscow, 1979) [in Russian].Google Scholar
  54. 54.
    V. A. Vavilin, Biomass Turnover Time and Organic Matter Degradation in Biological Treatment Systems (Nauka, Moscow, 1986) [in Russian].Google Scholar
  55. 55.
    T. Tokida, T. Miyazaki, M. Mizoguchi, et al., “Falling Atmospheric Pressure as a Trigger for Methane Ebullition from Peatland,” Global Biogeochem. Cycles 21, GB2003 (2007).CrossRefGoogle Scholar
  56. 56.
    R. Sander, Compilation of Henry’s Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry, http://www.mpch-mainz.mpg.de/~sander/res/henry.html (1999).
  57. 57.
    N. M. Bazhin, “Gas Transport in a Residual Layer of a Water Basin,” Chemosphere-Global Change 3(1), 33–40 (2001).CrossRefGoogle Scholar
  58. 58.
    J. J. West and L. J. Plug, “Time-Dependent Morphology of Thaw Lakes and Taliks in Deep and Shallow Ground Ice,” J. Geophys. Res. 113, F01009 (2008).CrossRefGoogle Scholar
  59. 59.
    A. N. Tikhonov and A. A. Samarskii, “Mathematical Physics Equations,” (Nauka, Moscow, 1977) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. M. Stepanenko
    • 1
  • E. E. Machul’skaya
    • 1
  • M. V. Glagolev
    • 2
    • 4
  • V. N. Lykossov
    • 3
  1. 1.Research Computer CenterMoscow State UniversityMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia
  3. 3.Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia
  4. 4.Yugra State UniversityKhanty-MansiiskRussia

Personalised recommendations