Izvestiya, Atmospheric and Oceanic Physics

, Volume 47, Issue 1, pp 15–30 | Cite as

Effect of including land-use driven radiative forcing of the surface albedo of land on climate response in the 16th–21st centuries



A change in ecosystem types, such as through natural-vegetation-agriculture conversion, alters the surface albedo and triggers attendant shortwave radiative forcing (RF). This paper describes numerical experiments performed using the climate model (CM) of the Institute of Atmospheric Physics (IAP), Russian Academy of Sciences, for the 16th–21st centuries; this model simulated the response to a change in the contents of greenhouse gases (tropospheric and stratospheric), sulfate aerosols, solar constant, as well as the response to change in surface albedo of land due to natural-vegetation-agriculture conversion. These forcing estimates relied on actual data until the late 20th century. In the 21st century, the agricultural area was specified according to scenarios of the Land Use Harmonization project and other anthropogenic impacts were specified using SRES scenarios. The change in the surface vegetation during conversion from natural vegetation to agriculture triggers a cooling RF in most regions except for those of natural semiarid vegetation. The global and annual average RF derived from the IAP RAS CM in late 20th century is −0.11 W m−2. Including the land-use driven RF in IAP RAS CM appreciably reconciled the model calculations to observations in this historical period. For instance, in addition to the net climate warming, IAP RAS CM predicted an annually average cooling and reduction in precipitation in the subtropics of Eurasia and North America and in Amazonia and central Africa, as well as a local maximum in annually average and summertime warming in East China. The land-use driven RF alters the sign in the dependence that the amplitude of the annual cycle of the near-surface atmospheric temperature has on the annually averaged temperature. One reason for the decrease in precipitation as a result of a change in albedo due to land use may be the suppression of the convective activity in the atmosphere in the warm period (throughout the year in the tropics) and the corresponding decrease in convective precipitation. In the 21st century, the effect that the land-use driven RF has on the climate response for scenarios of anthropogenic impact is generally small.


land use radiative forcing future climate change scenarios IAP RAS CM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anthropogenic Climate Changes, Ed. by M. I. Budyko and Yu. A. Izrael (Gidrometeoizdat, Leningrad, 1987) [in Russian].Google Scholar
  2. 2.
    G. B. Bonan, D. Pollard, and S. L. Thompson, “Effects of Boreal Forest Vegetation on Global Climate,” Nature 359(6397), 716–718 (1992).CrossRefGoogle Scholar
  3. 3.
    R. A. Betts, “Offset of the Potential Carbon Sink from Boreal Forestation by Decreases in Surface Albedo,” Nature 408(6809), 187–190 (2000).CrossRefGoogle Scholar
  4. 4.
    S. Sitch, V. Brovkin, W. von Bloh, et al., “Impacts of Future Land Cover Changes on Atmospheric and Climate,” Glob. Biogeochem. Cycles 19(2), GB2013 (2005).CrossRefGoogle Scholar
  5. 5.
    V. Brovkin, M. Claussen, E. Driesschaert, et al., “Biogeophysical Effects of Historical Land Cover Changes Simulated by Six Earth System Models of Intermediate Complexity,” Clim. Dyn. 26(6), 587–600 (2006).CrossRefGoogle Scholar
  6. 6.
    G. B. Bonan, “Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests,” Science 320(5882), 1444–1449 (2008).CrossRefGoogle Scholar
  7. 7.
    A. J. Pitman, N. de Noblet-Ducoudré, F. T. Cruz, et al., “Uncertainties in Climate Responses to Past Land Cover Change: First Results from the LUCID Intercomparison Study,” Geophys. Rev. Lett. 36(14), L14814 (2009).CrossRefGoogle Scholar
  8. 8.
    N. Ramankutty and J. A. Foley, “Estimating Historical Changes in Global Land Cover: Croplands from 1700 to 1992,” Glob. Biogeochem. Cycles 13(4), 997–1027 (1999).CrossRefGoogle Scholar
  9. 9.
    K. Goldewijk, “Estimating Global Land Use Change over the Past 300 Years: The HYDE Database,” Glob. Biogeochem. Cycles 15(2), 417–434 (2001).CrossRefGoogle Scholar
  10. 10.
    N. Ramankutty, A. T. Evan, C. Monfreda, et al., “Farming the Planet: 1. Geographic Distribution of Global Agricultural Lands in the Year 2000,” Glob. Biogeochem. Cycles 22(1), GB1003 (2008).CrossRefGoogle Scholar
  11. 11.
    Climate Change 2007: The Physical Science Basis, Ed. by S. Solomon, D. Qin, M. Manning (Cambridge University Press, Cambridge, 2007).Google Scholar
  12. 12.
    G. Myhre, M. M. Kvalevåg, and C. B. Schaaf, “Radiative Forcing due to Anthropogenic Vegetation Change Based on MODIS Surface Albedo Data,” Geophys. Rev. Lett. 32(21), L21410 (2005).CrossRefGoogle Scholar
  13. 13.
    M. Claussen, L. Mysak, A. Weaver, et al., “Earth System Models of Intermediate Complexity: Closing the Gap in the Spectrum of Climate System Models,” Clim. Dyn. 18(7), 579–586 (2002).CrossRefGoogle Scholar
  14. 14.
    V. Petoukhov, M. Claussen, A. Berger, et al., “EMIC Intercomparison Project (EMIP-CO2): Comparative Analysis of EMIC Simulations of Current Climate and Equilibrium and Transient Reponses to Atmospheric Doubling,” Clim. Dyn. 25, 363–385 (2005).CrossRefGoogle Scholar
  15. 15.
    V. K. Petoukhov, I. I. Mokhov, A. V. Eliseev, et al., The IAP RAS Global Climate Model (Dialogue-MSU, Moscow, 1998).Google Scholar
  16. 16.
    D. Handorf, V. K. Petoukhov, K. Dethloff, et al., “Decadal Climate Variability in a Coupled Atmosphere-Ocean Climate Model of Moderate Complexity,” J. Geophys. Res. 104(D22), 27253–27275 (1999).CrossRefGoogle Scholar
  17. 17.
    I. I. Mokhov, A. V. Eliseev, P. F. Demchenko, et al., “Climate Changes and Their Assessment Based on the IAP RAS Global Model Simulations,” Dokl. Akad. Nauk 402, 243–247 (2005) [Dokl. Earth Sci. 402 (4) 591–595 (2005)].Google Scholar
  18. 18.
    A. V. Eliseev, I. I. Mokhov, M. M. Arzhanov, et al., “Interaction of the Methane Cycle and Processes in Wetland Ecosystems in a Climate Model of Intermediate Complexity”, Izv. RAN. Fizika Atmosfery i Okeana 44(2), 147–162 (2008) [Izv., Atmos. Ocean. Phys. 44 (2), 139–152 (2008)]Google Scholar
  19. 19.
    I. I. Mokhov, V. A. Bezverkhnii, A. V. Eliseev, et al., “Model Estimations of Possible Climatic Changes in 21st Century at Different Scenarios of Solar and Volcanic Activities and Anthropogenic Impact”, Kosm. Issl. 46(4), 363–367 (2008) [Cosmic Res. 46 (4), 354–357 (2008)]Google Scholar
  20. 20.
    R. E. Dickinson, A. Henderson-Sellers, P. J. Kennedy, et al., “Biosphere-atmosphere transfer scheme (BATS).” NCAR TN-275-STR. Boulder, Colo: Naval Weather Service, 1986.Google Scholar
  21. 21.
    R. A. Monserud and R. Leemans, “Comparing Global Vegetation Maps with the Kappa Statistic,” Ecol. Mod. 62(4), 275–293 (1992).CrossRefGoogle Scholar
  22. 22.
    R. Leemans, Global data sets collected and compiled by the Biosphere Project. Laxenburg: International Institute for Applied System Analysis (1990).Google Scholar
  23. 23.
    M. M. Arzhanov, P. F. Demchenko, A. V. Eliseev, et al., “Simulation of Characteristics of Thermal and Hydrologic Soil Regimes in Equilibrium Numerical Experiments with a Climate Model of Intermediate Complexity”, Izv. RAN. Fizika Atmosfery i Okeana 44(5), 591–610 (2008) [Izv., Atmos. Ocean. Phys. 44 (5), 279–287 (2008)]Google Scholar
  24. 24.
    G. C. Hurtt, L. P. Chini, S. Frolking, et al., “Harmonization of Global Land-Use Scenarios for the Period 1500-2100 for IPCC-AR5,” Integrated Land Ecosystem-Atmosphere Processes Study (iLEAPS) Newsletter, No. 7, 6–8 (2009).Google Scholar
  25. 25.
    G. Marland, T. A. Boden, and R. J. Andres, “Global, Regional, and National CO2 Emissions,” Trends: A Compendium of Data on Global Change Oak Ridge, Tenn.: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy (2005).Google Scholar
  26. 26.
    R. A. Houghton, “Revised Estimates of the Annual Net Flux of Carbon to the Atmosphere from Changes in Land Use and Land Management 1850–2000,” Tellus 55B(2), 378–390 (2003).Google Scholar
  27. 27.
    I. I. Mokhov, V. A. Bezverkhnii, A. V. Eliseev, et al., “Model Estimates of Global Climatic Changes in the 21st Century with Account for Different Variation Scenarios of Solar Activity”, DAN 411(2), 250–253 (2006) [Dokl. Earth Sci., 411 (8), 1327–1330 (2006)]Google Scholar
  28. 28.
    MacFarling Meure, C., Etheridge, D., Trudinger, C., et al., “Law Dome and Ice Core Records Extended to 2000 Years BP,” Geophys. Res. Lett. 33(14), L14810 (2006).CrossRefGoogle Scholar
  29. 29.
    S. J. Walker, R. F. Weiss, and P. K. Salameh, “Reconstructed Histories of the Annual Mean Atmospheric Mole Fractions for the Halocarbons CFC-11, CFC-12, CFC-113, and Carbon Tetrachloride,” J. Geophys. Res. 105(C6), 14285–14296 (2000).CrossRefGoogle Scholar
  30. 30.
    L. W. Horowitz, “Past, Present, and Future Concentrations of Tropospheric Ozone and Aerosols: Methodology, Ozone Evaluation, and Sensitivity to Aerosol Wet Deposition,” J. Geophys. Res. 111(D22), D22211 (2006).CrossRefGoogle Scholar
  31. 31.
    Y.-M. Wang, J. Lean, and N. R. Sheeley, “Modeling the Sun’s Magnetic Field and Irradiance Since 1713,” Astrophys. J. 625(1), 522–538 (2005).CrossRefGoogle Scholar
  32. 32.
    A. Robertson, J. Overpeck, D. Rind, et al., “Hypothesized Climate Forcing Time Series for the Last 500 Years,” J. Geophys. Res. 106(D14), 14783–14804 (2001).CrossRefGoogle Scholar
  33. 33.
    C. M. Ammann, G. A. Meehl, W. M. Washington, et al., “A Monthly and Latitudinally Varying Volcanic Forcing Dataset in Simulations of 20th Century Climate,” Geophys. Rev. Lett. 30(12), 1657 (2003).CrossRefGoogle Scholar
  34. 34.
    Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by J. T. Houghton, Y. Ding, D. J. Griggs, et al. (Cambridge University Press, Cambridge, 2001).Google Scholar
  35. 35.
    P. F. Demchenko, A. V. Eliseev, M. M. Arzhanov, et al., “Impact of Global Warming Rate on Permafrost Degradation,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 35–43 (2006) [Izv., Atmos. Ocean. Phys. 42 (1), 32–39 (2006)].Google Scholar
  36. 36.
    A. V. Eliseev, I. I. Mokhov, and A. A. Karpenko, “Influence of Direct Sulfate-Aerosol Radiative Forcing on the Results of Numerical Experiments with a Climate Model of Intermediate Complexity,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 43, 591–601 (2007) [Izv., Atmos. Ocean. Phys. 43 (5), 544–554 (2007)].Google Scholar
  37. 37.
    A. V. Eliseev and I. I. Mokhov, et al., “Effect of Changes in Surface Albedo due to Land Use on Climate in XVI–XXI Centuries: Estimates using the Climatic Model of Institute of Atmospheric Physics, Russian Academy of Sciences,” in Problems of Ecological Monitoring and Modeling of Ecosystems, Ed. by Yu. A. Izrael’, S. M. Semenov, and V. N. Abakumov (Gidrometeoizdat, St. Petersburg, 2010) [in Russian].Google Scholar
  38. 38.
    C. Bertrand, M.-F. Loutre, M. Crucifix, et al., “Climate of the Last Millennium: A Sensitivity Study,” Tellus 54A(3), 221–244 (2002).Google Scholar
  39. 39.
    H. D. Matthews, A. J. Weaver, K. J. Meissner, et al., “Natural and Anthropogenic Climate Change: Incorporating Historical Land Cover Change, Vegetation Dynamics and the Global Carbon Cycle,” Clim. Dyn. 22(5), 461–479 (2004).CrossRefGoogle Scholar
  40. 40.
    I. I. Mokhov, “Analysis of the Annual Cycle of Climate Characteristics,” Meteorol. Gidrol., No. 9, 38–45 (1985).Google Scholar
  41. 41.
    A. V. Eliseev, I. I. Mokhov, and N. Yu. Vakalyuk, “Tendencies of Changes in the Phase Characteristics of the Annual Cycle of Surface Air Temperature for the Northern Hemisphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 36, 16–26 (2000) [Izv., Atmos. Ocean. Phys. 36 (1), 11–20 (2000)].Google Scholar
  42. 42.
    I. I. Mokhov and A. V. Eliseev, “Tropospheric and Stratospheric Temperature Annual Cycle: Tendencies of Change,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 33, 452–463 (1997) [Izv., Atmos. Ocean. Phys. 33 (4), 415–427 (1997)].Google Scholar
  43. 43.
    P. D. Jones, New M., Parker D.E., et al. “Surface Air Temperature and Its Changes over the Past 150 Years,” Rev. Geophys. 37(2), 173–199 (1999).CrossRefGoogle Scholar
  44. 44.
    J. Hansen, R. Ruedy, J. Glascoe, et al., “GISS Analysis of Surface Temperature Change,” J. Geophys. Res. 104(D24), 30997–31022 (1999).CrossRefGoogle Scholar
  45. 45.
    C. J. Wallace and T. J. Osborn, “Recent and Future Modulation of the Annual Cycle,” Clim. Res. 22(1), 1–11 (2002).CrossRefGoogle Scholar
  46. 46.
    A. V. Eliseev and I. I. Mokhov, “Amplitude-Phase Characteristics of the Annual Cycle of Surface Air Temperature in the Northern Hemisphere,” Adv. Atmos. Sci. 20(1), 1–16 (2003).Google Scholar
  47. 47.
    A. V. Eliseev, I. I. Mokhov, and M. S. Guseva, “Sensitivity of Amplitude-Phase Characteristics of the Surface Air Temperature Annual Cycle to Variations in Annual Mean Temperature,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 326–340 (2006) [Izv., Atmos. Ocean. Phys. 42 (3), 300–312 (2006)].Google Scholar
  48. 48.
    K. E. Muryshev, A. V. Eliseev, I. I. Mokhov, et al., “Validating and Assessing the Sensitivity of the Climate Model with an Ocean General Circulation Model Developed at the Institute of Atmospheric Physics, Russian Academy of Sciences,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 45, 448–466 (2009) [Izv., Atmos. Ocean. Phys. 45 (4), 416–433 (2009)].Google Scholar
  49. 49.
    A. V. Eliseev, I. I. Mokhov, and K. E. Muryshev, “Assessment of Climate Changes in XX–XXI Centuries using the Climate Model Version with an Ocean General Circulation Model Developed at the Institute of Atmospheric Physics, Russian Academy of Sciences,” Meteorol. Gidrol. (2011) (in press).Google Scholar
  50. 50.
    P. Brohan, J. J. Kennedy, I. Harris, et al., “Uncertainty Estimates in Regional and Global Observed Temperature Changes: A New Data Set from 1850,” J. Geophys. Res. 111(D12), D12106 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations